1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
// SPDX-License-Identifier: GPL-2.0

//! Kernel types.
//!
//! C header: [`include/linux/types.h`](../../../../include/linux/types.h)

use crate::{
    bindings,
    sync::{Ref, RefBorrow},
};
use alloc::boxed::Box;
use core::{
    cell::UnsafeCell,
    marker::PhantomData,
    mem::MaybeUninit,
    ops::{self, Deref, DerefMut},
    pin::Pin,
    ptr::NonNull,
};

/// Permissions.
///
/// C header: [`include/uapi/linux/stat.h`](../../../../include/uapi/linux/stat.h)
///
/// C header: [`include/linux/stat.h`](../../../../include/linux/stat.h)
pub struct Mode(bindings::umode_t);

impl Mode {
    /// Creates a [`Mode`] from an integer.
    pub fn from_int(m: u16) -> Mode {
        Mode(m)
    }

    /// Returns the mode as an integer.
    pub fn as_int(&self) -> u16 {
        self.0
    }
}

/// Used to convert an object into a raw pointer that represents it.
///
/// It can eventually be converted back into the object. This is used to store objects as pointers
/// in kernel data structures, for example, an implementation of
/// [`Operations`][crate::file::Operations] in `struct
/// file::private_data`.
pub trait PointerWrapper {
    /// Type of values borrowed between calls to [`PointerWrapper::into_pointer`] and
    /// [`PointerWrapper::from_pointer`].
    type Borrowed<'a>;

    /// Returns the raw pointer.
    fn into_pointer(self) -> *const core::ffi::c_void;

    /// Returns a borrowed value.
    ///
    /// # Safety
    ///
    /// `ptr` must have been returned by a previous call to [`PointerWrapper::into_pointer`].
    /// Additionally, [`PointerWrapper::from_pointer`] can only be called after *all* values
    /// returned by [`PointerWrapper::borrow`] have been dropped.
    unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> Self::Borrowed<'a>;

    /// Returns a mutably borrowed value.
    ///
    /// # Safety
    ///
    /// The passed pointer must come from a previous to [`PointerWrapper::into_pointer`], and no
    /// other concurrent users of the pointer (except the ones derived from the returned value) run
    /// at least until the returned [`ScopeGuard`] is dropped.
    unsafe fn borrow_mut<T: PointerWrapper>(ptr: *const core::ffi::c_void) -> ScopeGuard<T, fn(T)> {
        // SAFETY: The safety requirements ensure that `ptr` came from a previous call to
        // `into_pointer`.
        ScopeGuard::new_with_data(unsafe { T::from_pointer(ptr) }, |d| {
            d.into_pointer();
        })
    }

    /// Returns the instance back from the raw pointer.
    ///
    /// # Safety
    ///
    /// The passed pointer must come from a previous call to [`PointerWrapper::into_pointer()`].
    unsafe fn from_pointer(ptr: *const core::ffi::c_void) -> Self;
}

impl<T: 'static> PointerWrapper for Box<T> {
    type Borrowed<'a> = &'a T;

    fn into_pointer(self) -> *const core::ffi::c_void {
        Box::into_raw(self) as _
    }

    unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> &'a T {
        // SAFETY: The safety requirements for this function ensure that the object is still alive,
        // so it is safe to dereference the raw pointer.
        // The safety requirements also ensure that the object remains alive for the lifetime of
        // the returned value.
        unsafe { &*ptr.cast() }
    }

    unsafe fn from_pointer(ptr: *const core::ffi::c_void) -> Self {
        // SAFETY: The passed pointer comes from a previous call to [`Self::into_pointer()`].
        unsafe { Box::from_raw(ptr as _) }
    }
}

impl<T: 'static> PointerWrapper for Ref<T> {
    type Borrowed<'a> = RefBorrow<'a, T>;

    fn into_pointer(self) -> *const core::ffi::c_void {
        Ref::into_usize(self) as _
    }

    unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> RefBorrow<'a, T> {
        // SAFETY: The safety requirements for this function ensure that the underlying object
        // remains valid for the lifetime of the returned value.
        unsafe { Ref::borrow_usize(ptr as _) }
    }

    unsafe fn from_pointer(ptr: *const core::ffi::c_void) -> Self {
        // SAFETY: The passed pointer comes from a previous call to [`Self::into_pointer()`].
        unsafe { Ref::from_usize(ptr as _) }
    }
}

impl<T: PointerWrapper + Deref> PointerWrapper for Pin<T> {
    type Borrowed<'a> = T::Borrowed<'a>;

    fn into_pointer(self) -> *const core::ffi::c_void {
        // SAFETY: We continue to treat the pointer as pinned by returning just a pointer to it to
        // the caller.
        let inner = unsafe { Pin::into_inner_unchecked(self) };
        inner.into_pointer()
    }

    unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> Self::Borrowed<'a> {
        // SAFETY: The safety requirements for this function are the same as the ones for
        // `T::borrow`.
        unsafe { T::borrow(ptr) }
    }

    unsafe fn from_pointer(p: *const core::ffi::c_void) -> Self {
        // SAFETY: The object was originally pinned.
        // The passed pointer comes from a previous call to `inner::into_pointer()`.
        unsafe { Pin::new_unchecked(T::from_pointer(p)) }
    }
}

impl<T> PointerWrapper for *mut T {
    type Borrowed<'a> = *mut T;

    fn into_pointer(self) -> *const core::ffi::c_void {
        self as _
    }

    unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> Self::Borrowed<'a> {
        ptr as _
    }

    unsafe fn from_pointer(ptr: *const core::ffi::c_void) -> Self {
        ptr as _
    }
}

impl PointerWrapper for () {
    type Borrowed<'a> = ();

    fn into_pointer(self) -> *const core::ffi::c_void {
        // We use 1 to be different from a null pointer.
        1usize as _
    }

    unsafe fn borrow<'a>(_: *const core::ffi::c_void) -> Self::Borrowed<'a> {}

    unsafe fn from_pointer(_: *const core::ffi::c_void) -> Self {}
}

/// Runs a cleanup function/closure when dropped.
///
/// The [`ScopeGuard::dismiss`] function prevents the cleanup function from running.
///
/// # Examples
///
/// In the example below, we have multiple exit paths and we want to log regardless of which one is
/// taken:
/// ```
/// # use kernel::ScopeGuard;
/// fn example1(arg: bool) {
///     let _log = ScopeGuard::new(|| pr_info!("example1 completed\n"));
///
///     if arg {
///         return;
///     }
///
///     pr_info!("Do something...\n");
/// }
///
/// # example1(false);
/// # example1(true);
/// ```
///
/// In the example below, we want to log the same message on all early exits but a different one on
/// the main exit path:
/// ```
/// # use kernel::ScopeGuard;
/// fn example2(arg: bool) {
///     let log = ScopeGuard::new(|| pr_info!("example2 returned early\n"));
///
///     if arg {
///         return;
///     }
///
///     // (Other early returns...)
///
///     log.dismiss();
///     pr_info!("example2 no early return\n");
/// }
///
/// # example2(false);
/// # example2(true);
/// ```
///
/// In the example below, we need a mutable object (the vector) to be accessible within the log
/// function, so we wrap it in the [`ScopeGuard`]:
/// ```
/// # use kernel::ScopeGuard;
/// fn example3(arg: bool) -> Result {
///     let mut vec =
///         ScopeGuard::new_with_data(Vec::new(), |v| pr_info!("vec had {} elements\n", v.len()));
///
///     vec.try_push(10u8)?;
///     if arg {
///         return Ok(());
///     }
///     vec.try_push(20u8)?;
///     Ok(())
/// }
///
/// # assert_eq!(example3(false), Ok(()));
/// # assert_eq!(example3(true), Ok(()));
/// ```
///
/// # Invariants
///
/// The value stored in the struct is nearly always `Some(_)`, except between
/// [`ScopeGuard::dismiss`] and [`ScopeGuard::drop`]: in this case, it will be `None` as the value
/// will have been returned to the caller. Since  [`ScopeGuard::dismiss`] consumes the guard,
/// callers won't be able to use it anymore.
pub struct ScopeGuard<T, F: FnOnce(T)>(Option<(T, F)>);

impl<T, F: FnOnce(T)> ScopeGuard<T, F> {
    /// Creates a new guarded object wrapping the given data and with the given cleanup function.
    pub fn new_with_data(data: T, cleanup_func: F) -> Self {
        // INVARIANT: The struct is being initialised with `Some(_)`.
        Self(Some((data, cleanup_func)))
    }

    /// Prevents the cleanup function from running and returns the guarded data.
    pub fn dismiss(mut self) -> T {
        // INVARIANT: This is the exception case in the invariant; it is not visible to callers
        // because this function consumes `self`.
        self.0.take().unwrap().0
    }
}

impl ScopeGuard<(), Box<dyn FnOnce(())>> {
    /// Creates a new guarded object with the given cleanup function.
    pub fn new(cleanup: impl FnOnce()) -> ScopeGuard<(), impl FnOnce(())> {
        ScopeGuard::new_with_data((), move |_| cleanup())
    }
}

impl<T, F: FnOnce(T)> Deref for ScopeGuard<T, F> {
    type Target = T;

    fn deref(&self) -> &T {
        // The type invariants guarantee that `unwrap` will succeed.
        &self.0.as_ref().unwrap().0
    }
}

impl<T, F: FnOnce(T)> DerefMut for ScopeGuard<T, F> {
    fn deref_mut(&mut self) -> &mut T {
        // The type invariants guarantee that `unwrap` will succeed.
        &mut self.0.as_mut().unwrap().0
    }
}

impl<T, F: FnOnce(T)> Drop for ScopeGuard<T, F> {
    fn drop(&mut self) {
        // Run the cleanup function if one is still present.
        if let Some((data, cleanup)) = self.0.take() {
            cleanup(data)
        }
    }
}

/// Stores an opaque value.
///
/// This is meant to be used with FFI objects that are never interpreted by Rust code.
#[repr(transparent)]
pub struct Opaque<T>(MaybeUninit<UnsafeCell<T>>);

impl<T> Opaque<T> {
    /// Creates a new opaque value.
    pub const fn new(value: T) -> Self {
        Self(MaybeUninit::new(UnsafeCell::new(value)))
    }

    /// Creates an uninitialised value.
    pub const fn uninit() -> Self {
        Self(MaybeUninit::uninit())
    }

    /// Returns a raw pointer to the opaque data.
    pub fn get(&self) -> *mut T {
        UnsafeCell::raw_get(self.0.as_ptr())
    }
}

/// A bitmask.
///
/// It has a restriction that all bits must be the same, except one. For example, `0b1110111` and
/// `0b1000` are acceptable masks.
#[derive(Clone, Copy)]
pub struct Bit<T> {
    index: T,
    inverted: bool,
}

/// Creates a bit mask with a single bit set.
///
/// # Examples
///
/// ```
/// # use kernel::bit;
/// let mut x = 0xfeu32;
///
/// assert_eq!(x & bit(0), 0);
/// assert_eq!(x & bit(1), 2);
/// assert_eq!(x & bit(2), 4);
/// assert_eq!(x & bit(3), 8);
///
/// x |= bit(0);
/// assert_eq!(x, 0xff);
///
/// x &= !bit(1);
/// assert_eq!(x, 0xfd);
///
/// x &= !bit(7);
/// assert_eq!(x, 0x7d);
///
/// let y: u64 = bit(34).into();
/// assert_eq!(y, 0x400000000);
///
/// assert_eq!(y | bit(35), 0xc00000000);
/// ```
pub fn bit<T: Copy>(index: T) -> Bit<T> {
    Bit {
        index,
        inverted: false,
    }
}

impl<T: Copy> ops::Not for Bit<T> {
    type Output = Self;
    fn not(self) -> Self {
        Self {
            index: self.index,
            inverted: !self.inverted,
        }
    }
}

/// Implemented by integer types that allow counting the number of trailing zeroes.
pub trait TrailingZeros {
    /// Returns the number of trailing zeroes in the binary representation of `self`.
    fn trailing_zeros(&self) -> u32;
}

macro_rules! define_unsigned_number_traits {
    ($type_name:ty) => {
        impl TrailingZeros for $type_name {
            fn trailing_zeros(&self) -> u32 {
                <$type_name>::trailing_zeros(*self)
            }
        }

        impl<T: Copy> core::convert::From<Bit<T>> for $type_name
        where
            Self: ops::Shl<T, Output = Self> + core::convert::From<u8> + ops::Not<Output = Self>,
        {
            fn from(v: Bit<T>) -> Self {
                let c = Self::from(1u8) << v.index;
                if v.inverted {
                    !c
                } else {
                    c
                }
            }
        }

        impl<T: Copy> ops::BitAnd<Bit<T>> for $type_name
        where
            Self: ops::Shl<T, Output = Self> + core::convert::From<u8>,
        {
            type Output = Self;
            fn bitand(self, rhs: Bit<T>) -> Self::Output {
                self & Self::from(rhs)
            }
        }

        impl<T: Copy> ops::BitOr<Bit<T>> for $type_name
        where
            Self: ops::Shl<T, Output = Self> + core::convert::From<u8>,
        {
            type Output = Self;
            fn bitor(self, rhs: Bit<T>) -> Self::Output {
                self | Self::from(rhs)
            }
        }

        impl<T: Copy> ops::BitAndAssign<Bit<T>> for $type_name
        where
            Self: ops::Shl<T, Output = Self> + core::convert::From<u8>,
        {
            fn bitand_assign(&mut self, rhs: Bit<T>) {
                *self &= Self::from(rhs)
            }
        }

        impl<T: Copy> ops::BitOrAssign<Bit<T>> for $type_name
        where
            Self: ops::Shl<T, Output = Self> + core::convert::From<u8>,
        {
            fn bitor_assign(&mut self, rhs: Bit<T>) {
                *self |= Self::from(rhs)
            }
        }
    };
}

define_unsigned_number_traits!(u8);
define_unsigned_number_traits!(u16);
define_unsigned_number_traits!(u32);
define_unsigned_number_traits!(u64);
define_unsigned_number_traits!(usize);

/// Returns an iterator over the set bits of `value`.
///
/// # Examples
///
/// ```
/// use kernel::bits_iter;
///
/// let mut iter = bits_iter(5usize);
/// assert_eq!(iter.next().unwrap(), 0);
/// assert_eq!(iter.next().unwrap(), 2);
/// assert!(iter.next().is_none());
/// ```
///
/// ```
/// use kernel::bits_iter;
///
/// fn print_bits(x: usize) {
///     for bit in bits_iter(x) {
///         pr_info!("{}\n", bit);
///     }
/// }
///
/// # print_bits(42);
/// ```
#[inline]
pub fn bits_iter<T>(value: T) -> impl Iterator<Item = u32>
where
    T: core::cmp::PartialEq
        + From<u8>
        + ops::Shl<u32, Output = T>
        + ops::Not<Output = T>
        + ops::BitAndAssign
        + TrailingZeros,
{
    struct BitIterator<U> {
        value: U,
    }

    impl<U> Iterator for BitIterator<U>
    where
        U: core::cmp::PartialEq
            + From<u8>
            + ops::Shl<u32, Output = U>
            + ops::Not<Output = U>
            + ops::BitAndAssign
            + TrailingZeros,
    {
        type Item = u32;

        #[inline]
        fn next(&mut self) -> Option<u32> {
            if self.value == U::from(0u8) {
                return None;
            }
            let ret = self.value.trailing_zeros();
            self.value &= !(U::from(1u8) << ret);
            Some(ret)
        }
    }

    BitIterator { value }
}

/// A trait for boolean types.
///
/// This is meant to be used in type states to allow boolean constraints in implementation blocks.
/// In the example below, the implementation containing `MyType::set_value` could _not_ be
/// constrained to type states containing `Writable = true` if `Writable` were a constant instead
/// of a type.
///
/// # Safety
///
/// No additional implementations of [`Bool`] should be provided, as [`True`] and [`False`] are
/// already provided.
///
/// # Examples
///
/// ```
/// # use kernel::{Bool, False, True};
/// use core::marker::PhantomData;
///
/// // Type state specifies whether the type is writable.
/// trait MyTypeState {
///     type Writable: Bool;
/// }
///
/// // In state S1, the type is writable.
/// struct S1;
/// impl MyTypeState for S1 {
///     type Writable = True;
/// }
///
/// // In state S2, the type is not writable.
/// struct S2;
/// impl MyTypeState for S2 {
///     type Writable = False;
/// }
///
/// struct MyType<T: MyTypeState> {
///     value: u32,
///     _p: PhantomData<T>,
/// }
///
/// impl<T: MyTypeState> MyType<T> {
///     fn new(value: u32) -> Self {
///         Self {
///             value,
///             _p: PhantomData,
///         }
///     }
/// }
///
/// // This implementation block only applies if the type state is writable.
/// impl<T> MyType<T>
/// where
///     T: MyTypeState<Writable = True>,
/// {
///     fn set_value(&mut self, v: u32) {
///         self.value = v;
///     }
/// }
///
/// let mut x = MyType::<S1>::new(10);
/// let mut y = MyType::<S2>::new(20);
///
/// x.set_value(30);
///
/// // The code below fails to compile because `S2` is not writable.
/// // y.set_value(40);
/// ```
pub unsafe trait Bool {}

/// Represents the `true` value for types with [`Bool`] bound.
pub struct True;

// SAFETY: This is one of the only two implementations of `Bool`.
unsafe impl Bool for True {}

/// Represents the `false` value for types wth [`Bool`] bound.
pub struct False;

// SAFETY: This is one of the only two implementations of `Bool`.
unsafe impl Bool for False {}

/// Types that are _always_ reference counted.
///
/// It allows such types to define their own custom ref increment and decrement functions.
/// Additionally, it allows users to convert from a shared reference `&T` to an owned reference
/// [`ARef<T>`].
///
/// This is usually implemented by wrappers to existing structures on the C side of the code. For
/// Rust code, the recommendation is to use [`Ref`] to create reference-counted instances of a
/// type.
///
/// # Safety
///
/// Implementers must ensure that increments to the reference count keeps the object alive in
/// memory at least until a matching decrement performed.
///
/// Implementers must also ensure that all instances are reference-counted. (Otherwise they
/// won't be able to honour the requirement that [`AlwaysRefCounted::inc_ref`] keep the object
/// alive.)
pub unsafe trait AlwaysRefCounted {
    /// Increments the reference count on the object.
    fn inc_ref(&self);

    /// Decrements the reference count on the object.
    ///
    /// Frees the object when the count reaches zero.
    ///
    /// # Safety
    ///
    /// Callers must ensure that there was a previous matching increment to the reference count,
    /// and that the object is no longer used after its reference count is decremented (as it may
    /// result in the object being freed), unless the caller owns another increment on the refcount
    /// (e.g., it calls [`AlwaysRefCounted::inc_ref`] twice, then calls
    /// [`AlwaysRefCounted::dec_ref`] once).
    unsafe fn dec_ref(obj: NonNull<Self>);
}

/// An owned reference to an always-reference-counted object.
///
/// The object's reference count is automatically decremented when an instance of [`ARef`] is
/// dropped. It is also automatically incremented when a new instance is created via
/// [`ARef::clone`].
///
/// # Invariants
///
/// The pointer stored in `ptr` is non-null and valid for the lifetime of the [`ARef`] instance. In
/// particular, the [`ARef`] instance owns an increment on underlying object's reference count.
pub struct ARef<T: AlwaysRefCounted> {
    ptr: NonNull<T>,
    _p: PhantomData<T>,
}

impl<T: AlwaysRefCounted> ARef<T> {
    /// Creates a new instance of [`ARef`].
    ///
    /// It takes over an increment of the reference count on the underlying object.
    ///
    /// # Safety
    ///
    /// Callers must ensure that the reference count was incremented at least once, and that they
    /// are properly relinquishing one increment. That is, if there is only one increment, callers
    /// must not use the underlying object anymore -- it is only safe to do so via the newly
    /// created [`ARef`].
    pub unsafe fn from_raw(ptr: NonNull<T>) -> Self {
        // INVARIANT: The safety requirements guarantee that the new instance now owns the
        // increment on the refcount.
        Self {
            ptr,
            _p: PhantomData,
        }
    }
}

impl<T: AlwaysRefCounted> Clone for ARef<T> {
    fn clone(&self) -> Self {
        self.inc_ref();
        // SAFETY: We just incremented the refcount above.
        unsafe { Self::from_raw(self.ptr) }
    }
}

impl<T: AlwaysRefCounted> Deref for ARef<T> {
    type Target = T;

    fn deref(&self) -> &Self::Target {
        // SAFETY: The type invariants guarantee that the object is valid.
        unsafe { self.ptr.as_ref() }
    }
}

impl<T: AlwaysRefCounted> From<&T> for ARef<T> {
    fn from(b: &T) -> Self {
        b.inc_ref();
        // SAFETY: We just incremented the refcount above.
        unsafe { Self::from_raw(NonNull::from(b)) }
    }
}

impl<T: AlwaysRefCounted> Drop for ARef<T> {
    fn drop(&mut self) {
        // SAFETY: The type invariants guarantee that the `ARef` owns the reference we're about to
        // decrement.
        unsafe { T::dec_ref(self.ptr) };
    }
}

/// A sum type that always holds either a value of type `L` or `R`.
pub enum Either<L, R> {
    /// Constructs an instance of [`Either`] containing a value of type `L`.
    Left(L),

    /// Constructs an instance of [`Either`] containing a value of type `R`.
    Right(R),
}