1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
// SPDX-License-Identifier: GPL-2.0
//! Kernel types.
//!
//! C header: [`include/linux/types.h`](../../../../include/linux/types.h)
use crate::{
bindings,
sync::{Ref, RefBorrow},
};
use alloc::boxed::Box;
use core::{
cell::UnsafeCell,
marker::PhantomData,
mem::MaybeUninit,
ops::{self, Deref, DerefMut},
pin::Pin,
ptr::NonNull,
};
/// Permissions.
///
/// C header: [`include/uapi/linux/stat.h`](../../../../include/uapi/linux/stat.h)
///
/// C header: [`include/linux/stat.h`](../../../../include/linux/stat.h)
pub struct Mode(bindings::umode_t);
impl Mode {
/// Creates a [`Mode`] from an integer.
pub fn from_int(m: u16) -> Mode {
Mode(m)
}
/// Returns the mode as an integer.
pub fn as_int(&self) -> u16 {
self.0
}
}
/// Used to convert an object into a raw pointer that represents it.
///
/// It can eventually be converted back into the object. This is used to store objects as pointers
/// in kernel data structures, for example, an implementation of
/// [`Operations`][crate::file::Operations] in `struct
/// file::private_data`.
pub trait PointerWrapper {
/// Type of values borrowed between calls to [`PointerWrapper::into_pointer`] and
/// [`PointerWrapper::from_pointer`].
type Borrowed<'a>;
/// Returns the raw pointer.
fn into_pointer(self) -> *const core::ffi::c_void;
/// Returns a borrowed value.
///
/// # Safety
///
/// `ptr` must have been returned by a previous call to [`PointerWrapper::into_pointer`].
/// Additionally, [`PointerWrapper::from_pointer`] can only be called after *all* values
/// returned by [`PointerWrapper::borrow`] have been dropped.
unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> Self::Borrowed<'a>;
/// Returns a mutably borrowed value.
///
/// # Safety
///
/// The passed pointer must come from a previous to [`PointerWrapper::into_pointer`], and no
/// other concurrent users of the pointer (except the ones derived from the returned value) run
/// at least until the returned [`ScopeGuard`] is dropped.
unsafe fn borrow_mut<T: PointerWrapper>(ptr: *const core::ffi::c_void) -> ScopeGuard<T, fn(T)> {
// SAFETY: The safety requirements ensure that `ptr` came from a previous call to
// `into_pointer`.
ScopeGuard::new_with_data(unsafe { T::from_pointer(ptr) }, |d| {
d.into_pointer();
})
}
/// Returns the instance back from the raw pointer.
///
/// # Safety
///
/// The passed pointer must come from a previous call to [`PointerWrapper::into_pointer()`].
unsafe fn from_pointer(ptr: *const core::ffi::c_void) -> Self;
}
impl<T: 'static> PointerWrapper for Box<T> {
type Borrowed<'a> = &'a T;
fn into_pointer(self) -> *const core::ffi::c_void {
Box::into_raw(self) as _
}
unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> &'a T {
// SAFETY: The safety requirements for this function ensure that the object is still alive,
// so it is safe to dereference the raw pointer.
// The safety requirements also ensure that the object remains alive for the lifetime of
// the returned value.
unsafe { &*ptr.cast() }
}
unsafe fn from_pointer(ptr: *const core::ffi::c_void) -> Self {
// SAFETY: The passed pointer comes from a previous call to [`Self::into_pointer()`].
unsafe { Box::from_raw(ptr as _) }
}
}
impl<T: 'static> PointerWrapper for Ref<T> {
type Borrowed<'a> = RefBorrow<'a, T>;
fn into_pointer(self) -> *const core::ffi::c_void {
Ref::into_usize(self) as _
}
unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> RefBorrow<'a, T> {
// SAFETY: The safety requirements for this function ensure that the underlying object
// remains valid for the lifetime of the returned value.
unsafe { Ref::borrow_usize(ptr as _) }
}
unsafe fn from_pointer(ptr: *const core::ffi::c_void) -> Self {
// SAFETY: The passed pointer comes from a previous call to [`Self::into_pointer()`].
unsafe { Ref::from_usize(ptr as _) }
}
}
impl<T: PointerWrapper + Deref> PointerWrapper for Pin<T> {
type Borrowed<'a> = T::Borrowed<'a>;
fn into_pointer(self) -> *const core::ffi::c_void {
// SAFETY: We continue to treat the pointer as pinned by returning just a pointer to it to
// the caller.
let inner = unsafe { Pin::into_inner_unchecked(self) };
inner.into_pointer()
}
unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> Self::Borrowed<'a> {
// SAFETY: The safety requirements for this function are the same as the ones for
// `T::borrow`.
unsafe { T::borrow(ptr) }
}
unsafe fn from_pointer(p: *const core::ffi::c_void) -> Self {
// SAFETY: The object was originally pinned.
// The passed pointer comes from a previous call to `inner::into_pointer()`.
unsafe { Pin::new_unchecked(T::from_pointer(p)) }
}
}
impl<T> PointerWrapper for *mut T {
type Borrowed<'a> = *mut T;
fn into_pointer(self) -> *const core::ffi::c_void {
self as _
}
unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> Self::Borrowed<'a> {
ptr as _
}
unsafe fn from_pointer(ptr: *const core::ffi::c_void) -> Self {
ptr as _
}
}
impl PointerWrapper for () {
type Borrowed<'a> = ();
fn into_pointer(self) -> *const core::ffi::c_void {
// We use 1 to be different from a null pointer.
1usize as _
}
unsafe fn borrow<'a>(_: *const core::ffi::c_void) -> Self::Borrowed<'a> {}
unsafe fn from_pointer(_: *const core::ffi::c_void) -> Self {}
}
/// Runs a cleanup function/closure when dropped.
///
/// The [`ScopeGuard::dismiss`] function prevents the cleanup function from running.
///
/// # Examples
///
/// In the example below, we have multiple exit paths and we want to log regardless of which one is
/// taken:
/// ```
/// # use kernel::ScopeGuard;
/// fn example1(arg: bool) {
/// let _log = ScopeGuard::new(|| pr_info!("example1 completed\n"));
///
/// if arg {
/// return;
/// }
///
/// pr_info!("Do something...\n");
/// }
///
/// # example1(false);
/// # example1(true);
/// ```
///
/// In the example below, we want to log the same message on all early exits but a different one on
/// the main exit path:
/// ```
/// # use kernel::ScopeGuard;
/// fn example2(arg: bool) {
/// let log = ScopeGuard::new(|| pr_info!("example2 returned early\n"));
///
/// if arg {
/// return;
/// }
///
/// // (Other early returns...)
///
/// log.dismiss();
/// pr_info!("example2 no early return\n");
/// }
///
/// # example2(false);
/// # example2(true);
/// ```
///
/// In the example below, we need a mutable object (the vector) to be accessible within the log
/// function, so we wrap it in the [`ScopeGuard`]:
/// ```
/// # use kernel::ScopeGuard;
/// fn example3(arg: bool) -> Result {
/// let mut vec =
/// ScopeGuard::new_with_data(Vec::new(), |v| pr_info!("vec had {} elements\n", v.len()));
///
/// vec.try_push(10u8)?;
/// if arg {
/// return Ok(());
/// }
/// vec.try_push(20u8)?;
/// Ok(())
/// }
///
/// # assert_eq!(example3(false), Ok(()));
/// # assert_eq!(example3(true), Ok(()));
/// ```
///
/// # Invariants
///
/// The value stored in the struct is nearly always `Some(_)`, except between
/// [`ScopeGuard::dismiss`] and [`ScopeGuard::drop`]: in this case, it will be `None` as the value
/// will have been returned to the caller. Since [`ScopeGuard::dismiss`] consumes the guard,
/// callers won't be able to use it anymore.
pub struct ScopeGuard<T, F: FnOnce(T)>(Option<(T, F)>);
impl<T, F: FnOnce(T)> ScopeGuard<T, F> {
/// Creates a new guarded object wrapping the given data and with the given cleanup function.
pub fn new_with_data(data: T, cleanup_func: F) -> Self {
// INVARIANT: The struct is being initialised with `Some(_)`.
Self(Some((data, cleanup_func)))
}
/// Prevents the cleanup function from running and returns the guarded data.
pub fn dismiss(mut self) -> T {
// INVARIANT: This is the exception case in the invariant; it is not visible to callers
// because this function consumes `self`.
self.0.take().unwrap().0
}
}
impl ScopeGuard<(), Box<dyn FnOnce(())>> {
/// Creates a new guarded object with the given cleanup function.
pub fn new(cleanup: impl FnOnce()) -> ScopeGuard<(), impl FnOnce(())> {
ScopeGuard::new_with_data((), move |_| cleanup())
}
}
impl<T, F: FnOnce(T)> Deref for ScopeGuard<T, F> {
type Target = T;
fn deref(&self) -> &T {
// The type invariants guarantee that `unwrap` will succeed.
&self.0.as_ref().unwrap().0
}
}
impl<T, F: FnOnce(T)> DerefMut for ScopeGuard<T, F> {
fn deref_mut(&mut self) -> &mut T {
// The type invariants guarantee that `unwrap` will succeed.
&mut self.0.as_mut().unwrap().0
}
}
impl<T, F: FnOnce(T)> Drop for ScopeGuard<T, F> {
fn drop(&mut self) {
// Run the cleanup function if one is still present.
if let Some((data, cleanup)) = self.0.take() {
cleanup(data)
}
}
}
/// Stores an opaque value.
///
/// This is meant to be used with FFI objects that are never interpreted by Rust code.
#[repr(transparent)]
pub struct Opaque<T>(MaybeUninit<UnsafeCell<T>>);
impl<T> Opaque<T> {
/// Creates a new opaque value.
pub const fn new(value: T) -> Self {
Self(MaybeUninit::new(UnsafeCell::new(value)))
}
/// Creates an uninitialised value.
pub const fn uninit() -> Self {
Self(MaybeUninit::uninit())
}
/// Returns a raw pointer to the opaque data.
pub fn get(&self) -> *mut T {
UnsafeCell::raw_get(self.0.as_ptr())
}
}
/// A bitmask.
///
/// It has a restriction that all bits must be the same, except one. For example, `0b1110111` and
/// `0b1000` are acceptable masks.
#[derive(Clone, Copy)]
pub struct Bit<T> {
index: T,
inverted: bool,
}
/// Creates a bit mask with a single bit set.
///
/// # Examples
///
/// ```
/// # use kernel::bit;
/// let mut x = 0xfeu32;
///
/// assert_eq!(x & bit(0), 0);
/// assert_eq!(x & bit(1), 2);
/// assert_eq!(x & bit(2), 4);
/// assert_eq!(x & bit(3), 8);
///
/// x |= bit(0);
/// assert_eq!(x, 0xff);
///
/// x &= !bit(1);
/// assert_eq!(x, 0xfd);
///
/// x &= !bit(7);
/// assert_eq!(x, 0x7d);
///
/// let y: u64 = bit(34).into();
/// assert_eq!(y, 0x400000000);
///
/// assert_eq!(y | bit(35), 0xc00000000);
/// ```
pub fn bit<T: Copy>(index: T) -> Bit<T> {
Bit {
index,
inverted: false,
}
}
impl<T: Copy> ops::Not for Bit<T> {
type Output = Self;
fn not(self) -> Self {
Self {
index: self.index,
inverted: !self.inverted,
}
}
}
/// Implemented by integer types that allow counting the number of trailing zeroes.
pub trait TrailingZeros {
/// Returns the number of trailing zeroes in the binary representation of `self`.
fn trailing_zeros(&self) -> u32;
}
macro_rules! define_unsigned_number_traits {
($type_name:ty) => {
impl TrailingZeros for $type_name {
fn trailing_zeros(&self) -> u32 {
<$type_name>::trailing_zeros(*self)
}
}
impl<T: Copy> core::convert::From<Bit<T>> for $type_name
where
Self: ops::Shl<T, Output = Self> + core::convert::From<u8> + ops::Not<Output = Self>,
{
fn from(v: Bit<T>) -> Self {
let c = Self::from(1u8) << v.index;
if v.inverted {
!c
} else {
c
}
}
}
impl<T: Copy> ops::BitAnd<Bit<T>> for $type_name
where
Self: ops::Shl<T, Output = Self> + core::convert::From<u8>,
{
type Output = Self;
fn bitand(self, rhs: Bit<T>) -> Self::Output {
self & Self::from(rhs)
}
}
impl<T: Copy> ops::BitOr<Bit<T>> for $type_name
where
Self: ops::Shl<T, Output = Self> + core::convert::From<u8>,
{
type Output = Self;
fn bitor(self, rhs: Bit<T>) -> Self::Output {
self | Self::from(rhs)
}
}
impl<T: Copy> ops::BitAndAssign<Bit<T>> for $type_name
where
Self: ops::Shl<T, Output = Self> + core::convert::From<u8>,
{
fn bitand_assign(&mut self, rhs: Bit<T>) {
*self &= Self::from(rhs)
}
}
impl<T: Copy> ops::BitOrAssign<Bit<T>> for $type_name
where
Self: ops::Shl<T, Output = Self> + core::convert::From<u8>,
{
fn bitor_assign(&mut self, rhs: Bit<T>) {
*self |= Self::from(rhs)
}
}
};
}
define_unsigned_number_traits!(u8);
define_unsigned_number_traits!(u16);
define_unsigned_number_traits!(u32);
define_unsigned_number_traits!(u64);
define_unsigned_number_traits!(usize);
/// Returns an iterator over the set bits of `value`.
///
/// # Examples
///
/// ```
/// use kernel::bits_iter;
///
/// let mut iter = bits_iter(5usize);
/// assert_eq!(iter.next().unwrap(), 0);
/// assert_eq!(iter.next().unwrap(), 2);
/// assert!(iter.next().is_none());
/// ```
///
/// ```
/// use kernel::bits_iter;
///
/// fn print_bits(x: usize) {
/// for bit in bits_iter(x) {
/// pr_info!("{}\n", bit);
/// }
/// }
///
/// # print_bits(42);
/// ```
#[inline]
pub fn bits_iter<T>(value: T) -> impl Iterator<Item = u32>
where
T: core::cmp::PartialEq
+ From<u8>
+ ops::Shl<u32, Output = T>
+ ops::Not<Output = T>
+ ops::BitAndAssign
+ TrailingZeros,
{
struct BitIterator<U> {
value: U,
}
impl<U> Iterator for BitIterator<U>
where
U: core::cmp::PartialEq
+ From<u8>
+ ops::Shl<u32, Output = U>
+ ops::Not<Output = U>
+ ops::BitAndAssign
+ TrailingZeros,
{
type Item = u32;
#[inline]
fn next(&mut self) -> Option<u32> {
if self.value == U::from(0u8) {
return None;
}
let ret = self.value.trailing_zeros();
self.value &= !(U::from(1u8) << ret);
Some(ret)
}
}
BitIterator { value }
}
/// A trait for boolean types.
///
/// This is meant to be used in type states to allow boolean constraints in implementation blocks.
/// In the example below, the implementation containing `MyType::set_value` could _not_ be
/// constrained to type states containing `Writable = true` if `Writable` were a constant instead
/// of a type.
///
/// # Safety
///
/// No additional implementations of [`Bool`] should be provided, as [`True`] and [`False`] are
/// already provided.
///
/// # Examples
///
/// ```
/// # use kernel::{Bool, False, True};
/// use core::marker::PhantomData;
///
/// // Type state specifies whether the type is writable.
/// trait MyTypeState {
/// type Writable: Bool;
/// }
///
/// // In state S1, the type is writable.
/// struct S1;
/// impl MyTypeState for S1 {
/// type Writable = True;
/// }
///
/// // In state S2, the type is not writable.
/// struct S2;
/// impl MyTypeState for S2 {
/// type Writable = False;
/// }
///
/// struct MyType<T: MyTypeState> {
/// value: u32,
/// _p: PhantomData<T>,
/// }
///
/// impl<T: MyTypeState> MyType<T> {
/// fn new(value: u32) -> Self {
/// Self {
/// value,
/// _p: PhantomData,
/// }
/// }
/// }
///
/// // This implementation block only applies if the type state is writable.
/// impl<T> MyType<T>
/// where
/// T: MyTypeState<Writable = True>,
/// {
/// fn set_value(&mut self, v: u32) {
/// self.value = v;
/// }
/// }
///
/// let mut x = MyType::<S1>::new(10);
/// let mut y = MyType::<S2>::new(20);
///
/// x.set_value(30);
///
/// // The code below fails to compile because `S2` is not writable.
/// // y.set_value(40);
/// ```
pub unsafe trait Bool {}
/// Represents the `true` value for types with [`Bool`] bound.
pub struct True;
// SAFETY: This is one of the only two implementations of `Bool`.
unsafe impl Bool for True {}
/// Represents the `false` value for types wth [`Bool`] bound.
pub struct False;
// SAFETY: This is one of the only two implementations of `Bool`.
unsafe impl Bool for False {}
/// Types that are _always_ reference counted.
///
/// It allows such types to define their own custom ref increment and decrement functions.
/// Additionally, it allows users to convert from a shared reference `&T` to an owned reference
/// [`ARef<T>`].
///
/// This is usually implemented by wrappers to existing structures on the C side of the code. For
/// Rust code, the recommendation is to use [`Ref`] to create reference-counted instances of a
/// type.
///
/// # Safety
///
/// Implementers must ensure that increments to the reference count keeps the object alive in
/// memory at least until a matching decrement performed.
///
/// Implementers must also ensure that all instances are reference-counted. (Otherwise they
/// won't be able to honour the requirement that [`AlwaysRefCounted::inc_ref`] keep the object
/// alive.)
pub unsafe trait AlwaysRefCounted {
/// Increments the reference count on the object.
fn inc_ref(&self);
/// Decrements the reference count on the object.
///
/// Frees the object when the count reaches zero.
///
/// # Safety
///
/// Callers must ensure that there was a previous matching increment to the reference count,
/// and that the object is no longer used after its reference count is decremented (as it may
/// result in the object being freed), unless the caller owns another increment on the refcount
/// (e.g., it calls [`AlwaysRefCounted::inc_ref`] twice, then calls
/// [`AlwaysRefCounted::dec_ref`] once).
unsafe fn dec_ref(obj: NonNull<Self>);
}
/// An owned reference to an always-reference-counted object.
///
/// The object's reference count is automatically decremented when an instance of [`ARef`] is
/// dropped. It is also automatically incremented when a new instance is created via
/// [`ARef::clone`].
///
/// # Invariants
///
/// The pointer stored in `ptr` is non-null and valid for the lifetime of the [`ARef`] instance. In
/// particular, the [`ARef`] instance owns an increment on underlying object's reference count.
pub struct ARef<T: AlwaysRefCounted> {
ptr: NonNull<T>,
_p: PhantomData<T>,
}
impl<T: AlwaysRefCounted> ARef<T> {
/// Creates a new instance of [`ARef`].
///
/// It takes over an increment of the reference count on the underlying object.
///
/// # Safety
///
/// Callers must ensure that the reference count was incremented at least once, and that they
/// are properly relinquishing one increment. That is, if there is only one increment, callers
/// must not use the underlying object anymore -- it is only safe to do so via the newly
/// created [`ARef`].
pub unsafe fn from_raw(ptr: NonNull<T>) -> Self {
// INVARIANT: The safety requirements guarantee that the new instance now owns the
// increment on the refcount.
Self {
ptr,
_p: PhantomData,
}
}
}
impl<T: AlwaysRefCounted> Clone for ARef<T> {
fn clone(&self) -> Self {
self.inc_ref();
// SAFETY: We just incremented the refcount above.
unsafe { Self::from_raw(self.ptr) }
}
}
impl<T: AlwaysRefCounted> Deref for ARef<T> {
type Target = T;
fn deref(&self) -> &Self::Target {
// SAFETY: The type invariants guarantee that the object is valid.
unsafe { self.ptr.as_ref() }
}
}
impl<T: AlwaysRefCounted> From<&T> for ARef<T> {
fn from(b: &T) -> Self {
b.inc_ref();
// SAFETY: We just incremented the refcount above.
unsafe { Self::from_raw(NonNull::from(b)) }
}
}
impl<T: AlwaysRefCounted> Drop for ARef<T> {
fn drop(&mut self) {
// SAFETY: The type invariants guarantee that the `ARef` owns the reference we're about to
// decrement.
unsafe { T::dec_ref(self.ptr) };
}
}
/// A sum type that always holds either a value of type `L` or `R`.
pub enum Either<L, R> {
/// Constructs an instance of [`Either`] containing a value of type `L`.
Left(L),
/// Constructs an instance of [`Either`] containing a value of type `R`.
Right(R),
}