1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
//! Helper functions and types for fixed-length arrays.
//!
//! *[See also the array primitive type](array).*
#![stable(feature = "core_array", since = "1.36.0")]
use crate::borrow::{Borrow, BorrowMut};
use crate::cmp::Ordering;
use crate::convert::{Infallible, TryFrom};
use crate::fmt;
use crate::hash::{self, Hash};
use crate::iter::TrustedLen;
use crate::mem::{self, MaybeUninit};
use crate::ops::{
ChangeOutputType, ControlFlow, FromResidual, Index, IndexMut, NeverShortCircuit, Residual, Try,
};
use crate::slice::{Iter, IterMut};
mod equality;
mod iter;
#[stable(feature = "array_value_iter", since = "1.51.0")]
pub use iter::IntoIter;
/// Creates an array `[T; N]` where each array element `T` is returned by the `cb` call.
///
/// # Arguments
///
/// * `cb`: Callback where the passed argument is the current array index.
///
/// # Example
///
/// ```rust
/// #![feature(array_from_fn)]
///
/// let array = core::array::from_fn(|i| i);
/// assert_eq!(array, [0, 1, 2, 3, 4]);
/// ```
#[inline]
#[unstable(feature = "array_from_fn", issue = "89379")]
pub fn from_fn<F, T, const N: usize>(mut cb: F) -> [T; N]
where
F: FnMut(usize) -> T,
{
let mut idx = 0;
[(); N].map(|_| {
let res = cb(idx);
idx += 1;
res
})
}
/// Creates an array `[T; N]` where each fallible array element `T` is returned by the `cb` call.
/// Unlike [`from_fn`], where the element creation can't fail, this version will return an error
/// if any element creation was unsuccessful.
///
/// The return type of this function depends on the return type of the closure.
/// If you return `Result<T, E>` from the closure, you'll get a `Result<[T; N]; E>`.
/// If you return `Option<T>` from the closure, you'll get an `Option<[T; N]>`.
///
/// # Arguments
///
/// * `cb`: Callback where the passed argument is the current array index.
///
/// # Example
///
/// ```rust
/// #![feature(array_from_fn)]
///
/// let array: Result<[u8; 5], _> = std::array::try_from_fn(|i| i.try_into());
/// assert_eq!(array, Ok([0, 1, 2, 3, 4]));
///
/// let array: Result<[i8; 200], _> = std::array::try_from_fn(|i| i.try_into());
/// assert!(array.is_err());
///
/// let array: Option<[_; 4]> = std::array::try_from_fn(|i| i.checked_add(100));
/// assert_eq!(array, Some([100, 101, 102, 103]));
///
/// let array: Option<[_; 4]> = std::array::try_from_fn(|i| i.checked_sub(100));
/// assert_eq!(array, None);
/// ```
#[inline]
#[unstable(feature = "array_from_fn", issue = "89379")]
pub fn try_from_fn<F, R, const N: usize>(cb: F) -> ChangeOutputType<R, [R::Output; N]>
where
F: FnMut(usize) -> R,
R: Try,
R::Residual: Residual<[R::Output; N]>,
{
// SAFETY: we know for certain that this iterator will yield exactly `N`
// items.
unsafe { try_collect_into_array_unchecked(&mut (0..N).map(cb)) }
}
/// Converts a reference to `T` into a reference to an array of length 1 (without copying).
#[stable(feature = "array_from_ref", since = "1.53.0")]
#[rustc_const_unstable(feature = "const_array_from_ref", issue = "90206")]
pub const fn from_ref<T>(s: &T) -> &[T; 1] {
// SAFETY: Converting `&T` to `&[T; 1]` is sound.
unsafe { &*(s as *const T).cast::<[T; 1]>() }
}
/// Converts a mutable reference to `T` into a mutable reference to an array of length 1 (without copying).
#[stable(feature = "array_from_ref", since = "1.53.0")]
#[rustc_const_unstable(feature = "const_array_from_ref", issue = "90206")]
pub const fn from_mut<T>(s: &mut T) -> &mut [T; 1] {
// SAFETY: Converting `&mut T` to `&mut [T; 1]` is sound.
unsafe { &mut *(s as *mut T).cast::<[T; 1]>() }
}
/// The error type returned when a conversion from a slice to an array fails.
#[stable(feature = "try_from", since = "1.34.0")]
#[derive(Debug, Copy, Clone)]
pub struct TryFromSliceError(());
#[stable(feature = "core_array", since = "1.36.0")]
impl fmt::Display for TryFromSliceError {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(self.__description(), f)
}
}
impl TryFromSliceError {
#[unstable(
feature = "array_error_internals",
reason = "available through Error trait and this method should not \
be exposed publicly",
issue = "none"
)]
#[inline]
#[doc(hidden)]
pub fn __description(&self) -> &str {
"could not convert slice to array"
}
}
#[stable(feature = "try_from_slice_error", since = "1.36.0")]
#[rustc_const_unstable(feature = "const_convert", issue = "88674")]
impl const From<Infallible> for TryFromSliceError {
fn from(x: Infallible) -> TryFromSliceError {
match x {}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T, const N: usize> AsRef<[T]> for [T; N] {
#[inline]
fn as_ref(&self) -> &[T] {
&self[..]
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T, const N: usize> AsMut<[T]> for [T; N] {
#[inline]
fn as_mut(&mut self) -> &mut [T] {
&mut self[..]
}
}
#[stable(feature = "array_borrow", since = "1.4.0")]
#[rustc_const_unstable(feature = "const_borrow", issue = "91522")]
impl<T, const N: usize> const Borrow<[T]> for [T; N] {
fn borrow(&self) -> &[T] {
self
}
}
#[stable(feature = "array_borrow", since = "1.4.0")]
#[rustc_const_unstable(feature = "const_borrow", issue = "91522")]
impl<T, const N: usize> const BorrowMut<[T]> for [T; N] {
fn borrow_mut(&mut self) -> &mut [T] {
self
}
}
#[stable(feature = "try_from", since = "1.34.0")]
impl<T, const N: usize> TryFrom<&[T]> for [T; N]
where
T: Copy,
{
type Error = TryFromSliceError;
fn try_from(slice: &[T]) -> Result<[T; N], TryFromSliceError> {
<&Self>::try_from(slice).map(|r| *r)
}
}
#[stable(feature = "try_from_mut_slice_to_array", since = "1.59.0")]
impl<T, const N: usize> TryFrom<&mut [T]> for [T; N]
where
T: Copy,
{
type Error = TryFromSliceError;
fn try_from(slice: &mut [T]) -> Result<[T; N], TryFromSliceError> {
<Self>::try_from(&*slice)
}
}
#[stable(feature = "try_from", since = "1.34.0")]
impl<'a, T, const N: usize> TryFrom<&'a [T]> for &'a [T; N] {
type Error = TryFromSliceError;
fn try_from(slice: &[T]) -> Result<&[T; N], TryFromSliceError> {
if slice.len() == N {
let ptr = slice.as_ptr() as *const [T; N];
// SAFETY: ok because we just checked that the length fits
unsafe { Ok(&*ptr) }
} else {
Err(TryFromSliceError(()))
}
}
}
#[stable(feature = "try_from", since = "1.34.0")]
impl<'a, T, const N: usize> TryFrom<&'a mut [T]> for &'a mut [T; N] {
type Error = TryFromSliceError;
fn try_from(slice: &mut [T]) -> Result<&mut [T; N], TryFromSliceError> {
if slice.len() == N {
let ptr = slice.as_mut_ptr() as *mut [T; N];
// SAFETY: ok because we just checked that the length fits
unsafe { Ok(&mut *ptr) }
} else {
Err(TryFromSliceError(()))
}
}
}
/// The hash of an array is the same as that of the corresponding slice,
/// as required by the `Borrow` implementation.
///
/// ```
/// #![feature(build_hasher_simple_hash_one)]
/// use std::hash::BuildHasher;
///
/// let b = std::collections::hash_map::RandomState::new();
/// let a: [u8; 3] = [0xa8, 0x3c, 0x09];
/// let s: &[u8] = &[0xa8, 0x3c, 0x09];
/// assert_eq!(b.hash_one(a), b.hash_one(s));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Hash, const N: usize> Hash for [T; N] {
fn hash<H: hash::Hasher>(&self, state: &mut H) {
Hash::hash(&self[..], state)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: fmt::Debug, const N: usize> fmt::Debug for [T; N] {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&&self[..], f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T, const N: usize> IntoIterator for &'a [T; N] {
type Item = &'a T;
type IntoIter = Iter<'a, T>;
fn into_iter(self) -> Iter<'a, T> {
self.iter()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T, const N: usize> IntoIterator for &'a mut [T; N] {
type Item = &'a mut T;
type IntoIter = IterMut<'a, T>;
fn into_iter(self) -> IterMut<'a, T> {
self.iter_mut()
}
}
#[stable(feature = "index_trait_on_arrays", since = "1.50.0")]
#[rustc_const_unstable(feature = "const_slice_index", issue = "none")]
impl<T, I, const N: usize> const Index<I> for [T; N]
where
[T]: ~const Index<I>,
{
type Output = <[T] as Index<I>>::Output;
#[inline]
fn index(&self, index: I) -> &Self::Output {
Index::index(self as &[T], index)
}
}
#[stable(feature = "index_trait_on_arrays", since = "1.50.0")]
#[rustc_const_unstable(feature = "const_slice_index", issue = "none")]
impl<T, I, const N: usize> const IndexMut<I> for [T; N]
where
[T]: ~const IndexMut<I>,
{
#[inline]
fn index_mut(&mut self, index: I) -> &mut Self::Output {
IndexMut::index_mut(self as &mut [T], index)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: PartialOrd, const N: usize> PartialOrd for [T; N] {
#[inline]
fn partial_cmp(&self, other: &[T; N]) -> Option<Ordering> {
PartialOrd::partial_cmp(&&self[..], &&other[..])
}
#[inline]
fn lt(&self, other: &[T; N]) -> bool {
PartialOrd::lt(&&self[..], &&other[..])
}
#[inline]
fn le(&self, other: &[T; N]) -> bool {
PartialOrd::le(&&self[..], &&other[..])
}
#[inline]
fn ge(&self, other: &[T; N]) -> bool {
PartialOrd::ge(&&self[..], &&other[..])
}
#[inline]
fn gt(&self, other: &[T; N]) -> bool {
PartialOrd::gt(&&self[..], &&other[..])
}
}
/// Implements comparison of arrays [lexicographically](Ord#lexicographical-comparison).
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Ord, const N: usize> Ord for [T; N] {
#[inline]
fn cmp(&self, other: &[T; N]) -> Ordering {
Ord::cmp(&&self[..], &&other[..])
}
}
#[stable(feature = "copy_clone_array_lib", since = "1.58.0")]
impl<T: Copy, const N: usize> Copy for [T; N] {}
#[stable(feature = "copy_clone_array_lib", since = "1.58.0")]
impl<T: Clone, const N: usize> Clone for [T; N] {
#[inline]
fn clone(&self) -> Self {
SpecArrayClone::clone(self)
}
#[inline]
fn clone_from(&mut self, other: &Self) {
self.clone_from_slice(other);
}
}
trait SpecArrayClone: Clone {
fn clone<const N: usize>(array: &[Self; N]) -> [Self; N];
}
impl<T: Clone> SpecArrayClone for T {
#[inline]
default fn clone<const N: usize>(array: &[T; N]) -> [T; N] {
// SAFETY: we know for certain that this iterator will yield exactly `N`
// items.
unsafe { collect_into_array_unchecked(&mut array.iter().cloned()) }
}
}
impl<T: Copy> SpecArrayClone for T {
#[inline]
fn clone<const N: usize>(array: &[T; N]) -> [T; N] {
*array
}
}
// The Default impls cannot be done with const generics because `[T; 0]` doesn't
// require Default to be implemented, and having different impl blocks for
// different numbers isn't supported yet.
macro_rules! array_impl_default {
{$n:expr, $t:ident $($ts:ident)*} => {
#[stable(since = "1.4.0", feature = "array_default")]
impl<T> Default for [T; $n] where T: Default {
fn default() -> [T; $n] {
[$t::default(), $($ts::default()),*]
}
}
array_impl_default!{($n - 1), $($ts)*}
};
{$n:expr,} => {
#[stable(since = "1.4.0", feature = "array_default")]
#[rustc_const_unstable(feature = "const_default_impls", issue = "87864")]
impl<T> const Default for [T; $n] {
fn default() -> [T; $n] { [] }
}
};
}
array_impl_default! {32, T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T}
impl<T, const N: usize> [T; N] {
/// Returns an array of the same size as `self`, with function `f` applied to each element
/// in order.
///
/// If you don't necessarily need a new fixed-size array, consider using
/// [`Iterator::map`] instead.
///
///
/// # Note on performance and stack usage
///
/// Unfortunately, usages of this method are currently not always optimized
/// as well as they could be. This mainly concerns large arrays, as mapping
/// over small arrays seem to be optimized just fine. Also note that in
/// debug mode (i.e. without any optimizations), this method can use a lot
/// of stack space (a few times the size of the array or more).
///
/// Therefore, in performance-critical code, try to avoid using this method
/// on large arrays or check the emitted code. Also try to avoid chained
/// maps (e.g. `arr.map(...).map(...)`).
///
/// In many cases, you can instead use [`Iterator::map`] by calling `.iter()`
/// or `.into_iter()` on your array. `[T; N]::map` is only necessary if you
/// really need a new array of the same size as the result. Rust's lazy
/// iterators tend to get optimized very well.
///
///
/// # Examples
///
/// ```
/// let x = [1, 2, 3];
/// let y = x.map(|v| v + 1);
/// assert_eq!(y, [2, 3, 4]);
///
/// let x = [1, 2, 3];
/// let mut temp = 0;
/// let y = x.map(|v| { temp += 1; v * temp });
/// assert_eq!(y, [1, 4, 9]);
///
/// let x = ["Ferris", "Bueller's", "Day", "Off"];
/// let y = x.map(|v| v.len());
/// assert_eq!(y, [6, 9, 3, 3]);
/// ```
#[stable(feature = "array_map", since = "1.55.0")]
pub fn map<F, U>(self, f: F) -> [U; N]
where
F: FnMut(T) -> U,
{
// SAFETY: we know for certain that this iterator will yield exactly `N`
// items.
unsafe { collect_into_array_unchecked(&mut IntoIterator::into_iter(self).map(f)) }
}
/// A fallible function `f` applied to each element on array `self` in order to
/// return an array the same size as `self` or the first error encountered.
///
/// The return type of this function depends on the return type of the closure.
/// If you return `Result<T, E>` from the closure, you'll get a `Result<[T; N]; E>`.
/// If you return `Option<T>` from the closure, you'll get an `Option<[T; N]>`.
///
/// # Examples
///
/// ```
/// #![feature(array_try_map)]
/// let a = ["1", "2", "3"];
/// let b = a.try_map(|v| v.parse::<u32>()).unwrap().map(|v| v + 1);
/// assert_eq!(b, [2, 3, 4]);
///
/// let a = ["1", "2a", "3"];
/// let b = a.try_map(|v| v.parse::<u32>());
/// assert!(b.is_err());
///
/// use std::num::NonZeroU32;
/// let z = [1, 2, 0, 3, 4];
/// assert_eq!(z.try_map(NonZeroU32::new), None);
/// let a = [1, 2, 3];
/// let b = a.try_map(NonZeroU32::new);
/// let c = b.map(|x| x.map(NonZeroU32::get));
/// assert_eq!(c, Some(a));
/// ```
#[unstable(feature = "array_try_map", issue = "79711")]
pub fn try_map<F, R>(self, f: F) -> ChangeOutputType<R, [R::Output; N]>
where
F: FnMut(T) -> R,
R: Try,
R::Residual: Residual<[R::Output; N]>,
{
// SAFETY: we know for certain that this iterator will yield exactly `N`
// items.
unsafe { try_collect_into_array_unchecked(&mut IntoIterator::into_iter(self).map(f)) }
}
/// 'Zips up' two arrays into a single array of pairs.
///
/// `zip()` returns a new array where every element is a tuple where the
/// first element comes from the first array, and the second element comes
/// from the second array. In other words, it zips two arrays together,
/// into a single one.
///
/// # Examples
///
/// ```
/// #![feature(array_zip)]
/// let x = [1, 2, 3];
/// let y = [4, 5, 6];
/// let z = x.zip(y);
/// assert_eq!(z, [(1, 4), (2, 5), (3, 6)]);
/// ```
#[unstable(feature = "array_zip", issue = "80094")]
pub fn zip<U>(self, rhs: [U; N]) -> [(T, U); N] {
let mut iter = IntoIterator::into_iter(self).zip(rhs);
// SAFETY: we know for certain that this iterator will yield exactly `N`
// items.
unsafe { collect_into_array_unchecked(&mut iter) }
}
/// Returns a slice containing the entire array. Equivalent to `&s[..]`.
#[stable(feature = "array_as_slice", since = "1.57.0")]
#[rustc_const_stable(feature = "array_as_slice", since = "1.57.0")]
pub const fn as_slice(&self) -> &[T] {
self
}
/// Returns a mutable slice containing the entire array. Equivalent to
/// `&mut s[..]`.
#[stable(feature = "array_as_slice", since = "1.57.0")]
pub fn as_mut_slice(&mut self) -> &mut [T] {
self
}
/// Borrows each element and returns an array of references with the same
/// size as `self`.
///
///
/// # Example
///
/// ```
/// #![feature(array_methods)]
///
/// let floats = [3.1, 2.7, -1.0];
/// let float_refs: [&f64; 3] = floats.each_ref();
/// assert_eq!(float_refs, [&3.1, &2.7, &-1.0]);
/// ```
///
/// This method is particularly useful if combined with other methods, like
/// [`map`](#method.map). This way, you can avoid moving the original
/// array if its elements are not [`Copy`].
///
/// ```
/// #![feature(array_methods)]
///
/// let strings = ["Ferris".to_string(), "♥".to_string(), "Rust".to_string()];
/// let is_ascii = strings.each_ref().map(|s| s.is_ascii());
/// assert_eq!(is_ascii, [true, false, true]);
///
/// // We can still access the original array: it has not been moved.
/// assert_eq!(strings.len(), 3);
/// ```
#[unstable(feature = "array_methods", issue = "76118")]
pub fn each_ref(&self) -> [&T; N] {
// SAFETY: we know for certain that this iterator will yield exactly `N`
// items.
unsafe { collect_into_array_unchecked(&mut self.iter()) }
}
/// Borrows each element mutably and returns an array of mutable references
/// with the same size as `self`.
///
///
/// # Example
///
/// ```
/// #![feature(array_methods)]
///
/// let mut floats = [3.1, 2.7, -1.0];
/// let float_refs: [&mut f64; 3] = floats.each_mut();
/// *float_refs[0] = 0.0;
/// assert_eq!(float_refs, [&mut 0.0, &mut 2.7, &mut -1.0]);
/// assert_eq!(floats, [0.0, 2.7, -1.0]);
/// ```
#[unstable(feature = "array_methods", issue = "76118")]
pub fn each_mut(&mut self) -> [&mut T; N] {
// SAFETY: we know for certain that this iterator will yield exactly `N`
// items.
unsafe { collect_into_array_unchecked(&mut self.iter_mut()) }
}
/// Divides one array reference into two at an index.
///
/// The first will contain all indices from `[0, M)` (excluding
/// the index `M` itself) and the second will contain all
/// indices from `[M, N)` (excluding the index `N` itself).
///
/// # Panics
///
/// Panics if `M > N`.
///
/// # Examples
///
/// ```
/// #![feature(split_array)]
///
/// let v = [1, 2, 3, 4, 5, 6];
///
/// {
/// let (left, right) = v.split_array_ref::<0>();
/// assert_eq!(left, &[]);
/// assert_eq!(right, &[1, 2, 3, 4, 5, 6]);
/// }
///
/// {
/// let (left, right) = v.split_array_ref::<2>();
/// assert_eq!(left, &[1, 2]);
/// assert_eq!(right, &[3, 4, 5, 6]);
/// }
///
/// {
/// let (left, right) = v.split_array_ref::<6>();
/// assert_eq!(left, &[1, 2, 3, 4, 5, 6]);
/// assert_eq!(right, &[]);
/// }
/// ```
#[unstable(
feature = "split_array",
reason = "return type should have array as 2nd element",
issue = "90091"
)]
#[inline]
pub fn split_array_ref<const M: usize>(&self) -> (&[T; M], &[T]) {
(&self[..]).split_array_ref::<M>()
}
/// Divides one mutable array reference into two at an index.
///
/// The first will contain all indices from `[0, M)` (excluding
/// the index `M` itself) and the second will contain all
/// indices from `[M, N)` (excluding the index `N` itself).
///
/// # Panics
///
/// Panics if `M > N`.
///
/// # Examples
///
/// ```
/// #![feature(split_array)]
///
/// let mut v = [1, 0, 3, 0, 5, 6];
/// let (left, right) = v.split_array_mut::<2>();
/// assert_eq!(left, &mut [1, 0][..]);
/// assert_eq!(right, &mut [3, 0, 5, 6]);
/// left[1] = 2;
/// right[1] = 4;
/// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
/// ```
#[unstable(
feature = "split_array",
reason = "return type should have array as 2nd element",
issue = "90091"
)]
#[inline]
pub fn split_array_mut<const M: usize>(&mut self) -> (&mut [T; M], &mut [T]) {
(&mut self[..]).split_array_mut::<M>()
}
/// Divides one array reference into two at an index from the end.
///
/// The first will contain all indices from `[0, N - M)` (excluding
/// the index `N - M` itself) and the second will contain all
/// indices from `[N - M, N)` (excluding the index `N` itself).
///
/// # Panics
///
/// Panics if `M > N`.
///
/// # Examples
///
/// ```
/// #![feature(split_array)]
///
/// let v = [1, 2, 3, 4, 5, 6];
///
/// {
/// let (left, right) = v.rsplit_array_ref::<0>();
/// assert_eq!(left, &[1, 2, 3, 4, 5, 6]);
/// assert_eq!(right, &[]);
/// }
///
/// {
/// let (left, right) = v.rsplit_array_ref::<2>();
/// assert_eq!(left, &[1, 2, 3, 4]);
/// assert_eq!(right, &[5, 6]);
/// }
///
/// {
/// let (left, right) = v.rsplit_array_ref::<6>();
/// assert_eq!(left, &[]);
/// assert_eq!(right, &[1, 2, 3, 4, 5, 6]);
/// }
/// ```
#[unstable(
feature = "split_array",
reason = "return type should have array as 2nd element",
issue = "90091"
)]
#[inline]
pub fn rsplit_array_ref<const M: usize>(&self) -> (&[T], &[T; M]) {
(&self[..]).rsplit_array_ref::<M>()
}
/// Divides one mutable array reference into two at an index from the end.
///
/// The first will contain all indices from `[0, N - M)` (excluding
/// the index `N - M` itself) and the second will contain all
/// indices from `[N - M, N)` (excluding the index `N` itself).
///
/// # Panics
///
/// Panics if `M > N`.
///
/// # Examples
///
/// ```
/// #![feature(split_array)]
///
/// let mut v = [1, 0, 3, 0, 5, 6];
/// let (left, right) = v.rsplit_array_mut::<4>();
/// assert_eq!(left, &mut [1, 0]);
/// assert_eq!(right, &mut [3, 0, 5, 6][..]);
/// left[1] = 2;
/// right[1] = 4;
/// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
/// ```
#[unstable(
feature = "split_array",
reason = "return type should have array as 2nd element",
issue = "90091"
)]
#[inline]
pub fn rsplit_array_mut<const M: usize>(&mut self) -> (&mut [T], &mut [T; M]) {
(&mut self[..]).rsplit_array_mut::<M>()
}
}
/// Pulls `N` items from `iter` and returns them as an array. If the iterator
/// yields fewer than `N` items, this function exhibits undefined behavior.
///
/// See [`try_collect_into_array`] for more information.
///
///
/// # Safety
///
/// It is up to the caller to guarantee that `iter` yields at least `N` items.
/// Violating this condition causes undefined behavior.
unsafe fn try_collect_into_array_unchecked<I, T, R, const N: usize>(iter: &mut I) -> R::TryType
where
// Note: `TrustedLen` here is somewhat of an experiment. This is just an
// internal function, so feel free to remove if this bound turns out to be a
// bad idea. In that case, remember to also remove the lower bound
// `debug_assert!` below!
I: Iterator + TrustedLen,
I::Item: Try<Output = T, Residual = R>,
R: Residual<[T; N]>,
{
debug_assert!(N <= iter.size_hint().1.unwrap_or(usize::MAX));
debug_assert!(N <= iter.size_hint().0);
// SAFETY: covered by the function contract.
unsafe { try_collect_into_array(iter).unwrap_unchecked() }
}
// Infallible version of `try_collect_into_array_unchecked`.
unsafe fn collect_into_array_unchecked<I, const N: usize>(iter: &mut I) -> [I::Item; N]
where
I: Iterator + TrustedLen,
{
let mut map = iter.map(NeverShortCircuit);
// SAFETY: The same safety considerations w.r.t. the iterator length
// apply for `try_collect_into_array_unchecked` as for
// `collect_into_array_unchecked`
match unsafe { try_collect_into_array_unchecked(&mut map) } {
NeverShortCircuit(array) => array,
}
}
/// Pulls `N` items from `iter` and returns them as an array. If the iterator
/// yields fewer than `N` items, `None` is returned and all already yielded
/// items are dropped.
///
/// Since the iterator is passed as a mutable reference and this function calls
/// `next` at most `N` times, the iterator can still be used afterwards to
/// retrieve the remaining items.
///
/// If `iter.next()` panicks, all items already yielded by the iterator are
/// dropped.
fn try_collect_into_array<I, T, R, const N: usize>(iter: &mut I) -> Option<R::TryType>
where
I: Iterator,
I::Item: Try<Output = T, Residual = R>,
R: Residual<[T; N]>,
{
if N == 0 {
// SAFETY: An empty array is always inhabited and has no validity invariants.
return unsafe { Some(Try::from_output(mem::zeroed())) };
}
struct Guard<'a, T, const N: usize> {
array_mut: &'a mut [MaybeUninit<T>; N],
initialized: usize,
}
impl<T, const N: usize> Drop for Guard<'_, T, N> {
fn drop(&mut self) {
debug_assert!(self.initialized <= N);
// SAFETY: this slice will contain only initialized objects.
unsafe {
crate::ptr::drop_in_place(MaybeUninit::slice_assume_init_mut(
&mut self.array_mut.get_unchecked_mut(..self.initialized),
));
}
}
}
let mut array = MaybeUninit::uninit_array::<N>();
let mut guard = Guard { array_mut: &mut array, initialized: 0 };
while let Some(item_rslt) = iter.next() {
let item = match item_rslt.branch() {
ControlFlow::Break(r) => {
return Some(FromResidual::from_residual(r));
}
ControlFlow::Continue(elem) => elem,
};
// SAFETY: `guard.initialized` starts at 0, is increased by one in the
// loop and the loop is aborted once it reaches N (which is
// `array.len()`).
unsafe {
guard.array_mut.get_unchecked_mut(guard.initialized).write(item);
}
guard.initialized += 1;
// Check if the whole array was initialized.
if guard.initialized == N {
mem::forget(guard);
// SAFETY: the condition above asserts that all elements are
// initialized.
let out = unsafe { MaybeUninit::array_assume_init(array) };
return Some(Try::from_output(out));
}
}
// This is only reached if the iterator is exhausted before
// `guard.initialized` reaches `N`. Also note that `guard` is dropped here,
// dropping all already initialized elements.
None
}