1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
// SPDX-License-Identifier: GPL-2.0
//! Async networking.
use crate::{bindings, error::code::*, net, sync::NoWaitLock, types::Opaque, Result};
use core::{
future::Future,
marker::{PhantomData, PhantomPinned},
ops::Deref,
pin::Pin,
task::{Context, Poll, Waker},
};
/// A socket listening on a TCP port.
///
/// The [`TcpListener::accept`] method is meant to be used in async contexts.
pub struct TcpListener {
listener: net::TcpListener,
}
impl TcpListener {
/// Creates a new TCP listener.
///
/// It is configured to listen on the given socket address for the given namespace.
pub fn try_new(ns: &net::Namespace, addr: &net::SocketAddr) -> Result<Self> {
Ok(Self {
listener: net::TcpListener::try_new(ns, addr)?,
})
}
/// Accepts a new connection.
///
/// Returns a future that when ready indicates the result of the accept operation; on success,
/// it contains the newly-accepted tcp stream.
pub fn accept(&self) -> impl Future<Output = Result<TcpStream>> + '_ {
SocketFuture::from_listener(
self,
bindings::BINDINGS_EPOLLIN | bindings::BINDINGS_EPOLLERR,
|| {
Ok(TcpStream {
stream: self.listener.accept(false)?,
})
},
)
}
}
impl Deref for TcpListener {
type Target = net::TcpListener;
fn deref(&self) -> &Self::Target {
&self.listener
}
}
/// A connected TCP socket.
///
/// The potentially blocking methods (e.g., [`TcpStream::read`], [`TcpStream::write`]) are meant
/// to be used in async contexts.
///
/// # Examples
///
/// ```
/// # use kernel::prelude::*;
/// # use kernel::kasync::net::TcpStream;
/// async fn echo_server(stream: TcpStream) -> Result {
/// let mut buf = [0u8; 1024];
/// loop {
/// let n = stream.read(&mut buf).await?;
/// if n == 0 {
/// return Ok(());
/// }
/// stream.write_all(&buf[..n]).await?;
/// }
/// }
/// ```
pub struct TcpStream {
stream: net::TcpStream,
}
impl TcpStream {
/// Reads data from a connected socket.
///
/// Returns a future that when ready indicates the result of the read operation; on success, it
/// contains the number of bytes read, which will be zero if the connection is closed.
pub fn read<'a>(&'a self, buf: &'a mut [u8]) -> impl Future<Output = Result<usize>> + 'a {
SocketFuture::from_stream(
self,
bindings::BINDINGS_EPOLLIN | bindings::BINDINGS_EPOLLHUP | bindings::BINDINGS_EPOLLERR,
|| self.stream.read(buf, false),
)
}
/// Writes data to the connected socket.
///
/// Returns a future that when ready indicates the result of the write operation; on success, it
/// contains the number of bytes written.
pub fn write<'a>(&'a self, buf: &'a [u8]) -> impl Future<Output = Result<usize>> + 'a {
SocketFuture::from_stream(
self,
bindings::BINDINGS_EPOLLOUT | bindings::BINDINGS_EPOLLHUP | bindings::BINDINGS_EPOLLERR,
|| self.stream.write(buf, false),
)
}
/// Writes all the data to the connected socket.
///
/// Returns a future that when ready indicates the result of the write operation; on success, it
/// has written all the data.
pub async fn write_all<'a>(&'a self, buf: &'a [u8]) -> Result {
let mut rem = buf;
while !rem.is_empty() {
let n = self.write(rem).await?;
rem = &rem[n..];
}
Ok(())
}
}
impl Deref for TcpStream {
type Target = net::TcpStream;
fn deref(&self) -> &Self::Target {
&self.stream
}
}
/// A future for a socket operation.
///
/// # Invariants
///
/// `sock` is always non-null and valid for the duration of the lifetime of the instance.
struct SocketFuture<'a, Out, F: FnMut() -> Result<Out> + Send + 'a> {
sock: *mut bindings::socket,
mask: u32,
is_queued: bool,
wq_entry: Opaque<bindings::wait_queue_entry>,
waker: NoWaitLock<Option<Waker>>,
_p: PhantomData<&'a ()>,
_pin: PhantomPinned,
operation: F,
}
// SAFETY: A kernel socket can be used from any thread, `wq_entry` is only used on drop and when
// `is_queued` is initially `false`.
unsafe impl<Out, F: FnMut() -> Result<Out> + Send> Send for SocketFuture<'_, Out, F> {}
impl<'a, Out, F: FnMut() -> Result<Out> + Send + 'a> SocketFuture<'a, Out, F> {
/// Creates a new socket future.
///
/// # Safety
///
/// Callers must ensure that `sock` is non-null, valid, and remains valid for the lifetime
/// (`'a`) of the returned instance.
unsafe fn new(sock: *mut bindings::socket, mask: u32, operation: F) -> Self {
Self {
sock,
mask,
is_queued: false,
wq_entry: Opaque::uninit(),
waker: NoWaitLock::new(None),
operation,
_p: PhantomData,
_pin: PhantomPinned,
}
}
/// Creates a new socket future for a tcp listener.
fn from_listener(listener: &'a TcpListener, mask: u32, operation: F) -> Self {
// SAFETY: The socket is guaranteed to remain valid because it is bound to the reference to
// the listener (whose existence guarantees the socket remains valid).
unsafe { Self::new(listener.listener.sock, mask, operation) }
}
/// Creates a new socket future for a tcp stream.
fn from_stream(stream: &'a TcpStream, mask: u32, operation: F) -> Self {
// SAFETY: The socket is guaranteed to remain valid because it is bound to the reference to
// the stream (whose existence guarantees the socket remains valid).
unsafe { Self::new(stream.stream.sock, mask, operation) }
}
/// Callback called when the socket changes state.
///
/// If the state matches the one we're waiting on, we wake up the task so that the future can be
/// polled again.
unsafe extern "C" fn wake_callback(
wq_entry: *mut bindings::wait_queue_entry,
_mode: core::ffi::c_uint,
_flags: core::ffi::c_int,
key: *mut core::ffi::c_void,
) -> core::ffi::c_int {
let mask = key as u32;
// SAFETY: The future is valid while this callback is called because we remove from the
// queue on drop.
//
// There is a potential soundness issue here because we're generating a shared reference to
// `Self` while `Self::poll` has a mutable (unique) reference. However, for `!Unpin` types
// (like `Self`), `&mut T` is treated as `*mut T` per
// <https://github.com/rust-lang/rust/issues/63818> -- so we avoid the unsoundness. Once a
// more definitive solution is available, we can change this to use it.
let s = unsafe { &*crate::container_of!(wq_entry, Self, wq_entry) };
if mask & s.mask == 0 {
// Nothing to do as this notification doesn't interest us.
return 0;
}
// If we can't acquire the waker lock, the waker is in the process of being modified. Our
// attempt to acquire the lock will be reported to the lock owner, so it will trigger the
// wake up.
if let Some(guard) = s.waker.try_lock() {
if let Some(ref w) = *guard {
let cloned = w.clone();
drop(guard);
cloned.wake();
return 1;
}
}
0
}
/// Poll the future once.
///
/// It calls the operation and converts `EAGAIN` errors into a pending state.
fn poll_once(self: Pin<&mut Self>) -> Poll<Result<Out>> {
// SAFETY: We never move out of `this`.
let this = unsafe { self.get_unchecked_mut() };
match (this.operation)() {
Ok(s) => Poll::Ready(Ok(s)),
Err(e) => {
if e == EAGAIN {
Poll::Pending
} else {
Poll::Ready(Err(e))
}
}
}
}
/// Updates the waker stored in the future.
///
/// It automatically triggers a wake up on races with the reactor.
fn set_waker(&self, waker: &Waker) {
if let Some(mut guard) = self.waker.try_lock() {
let old = core::mem::replace(&mut *guard, Some(waker.clone()));
let contention = guard.unlock();
drop(old);
if !contention {
return;
}
}
// We either couldn't store the waker because the existing one is being awakened, or the
// reactor tried to acquire the lock while we held it (contention). In either case, we just
// wake it up to ensure we don't miss any notification.
waker.wake_by_ref();
}
}
impl<Out, F: FnMut() -> Result<Out> + Send> Future for SocketFuture<'_, Out, F> {
type Output = Result<Out>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
match self.as_mut().poll_once() {
Poll::Ready(r) => Poll::Ready(r),
Poll::Pending => {
// Store away the latest waker every time we may `Pending`.
self.set_waker(cx.waker());
if self.is_queued {
// Nothing else to do was the waiter is already queued.
return Poll::Pending;
}
// SAFETY: We never move out of `this`.
let this = unsafe { self.as_mut().get_unchecked_mut() };
this.is_queued = true;
// SAFETY: `wq_entry` is valid for write.
unsafe {
bindings::init_waitqueue_func_entry(
this.wq_entry.get(),
Some(Self::wake_callback),
)
};
// SAFETY: `wq_entry` was just initialised above and is valid for read/write.
// By the type invariants, the socket is always valid.
unsafe {
bindings::add_wait_queue(
core::ptr::addr_of_mut!((*this.sock).wq.wait),
this.wq_entry.get(),
)
};
// If the future wasn't queued yet, we need to poll again in case it reached
// the desired state between the last poll and being queued (in which case we
// would have missed the notification).
self.poll_once()
}
}
}
}
impl<Out, F: FnMut() -> Result<Out> + Send> Drop for SocketFuture<'_, Out, F> {
fn drop(&mut self) {
if !self.is_queued {
return;
}
// SAFETY: `wq_entry` is initialised because `is_queued` is set to `true`, so it is valid
// for read/write. By the type invariants, the socket is always valid.
unsafe {
bindings::remove_wait_queue(
core::ptr::addr_of_mut!((*self.sock).wq.wait),
self.wq_entry.get(),
)
};
}
}