1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
// SPDX-License-Identifier: GPL-2.0

//! A kernel mutex.
//!
//! This module allows Rust code to use the kernel's [`struct mutex`].

use super::{Guard, Lock, LockClassKey, LockFactory, LockIniter, WriteLock};
use crate::{bindings, str::CStr, Opaque};
use core::{cell::UnsafeCell, marker::PhantomPinned, pin::Pin};

/// Safely initialises a [`Mutex`] with the given name, generating a new lock class.
#[macro_export]
macro_rules! mutex_init {
    ($mutex:expr, $name:literal) => {
        $crate::init_with_lockdep!($mutex, $name)
    };
}

/// Exposes the kernel's [`struct mutex`]. When multiple threads attempt to lock the same mutex,
/// only one at a time is allowed to progress, the others will block (sleep) until the mutex is
/// unlocked, at which point another thread will be allowed to wake up and make progress.
///
/// A [`Mutex`] must first be initialised with a call to [`Mutex::init_lock`] before it can be
/// used. The [`mutex_init`] macro is provided to automatically assign a new lock class to a mutex
/// instance.
///
/// Since it may block, [`Mutex`] needs to be used with care in atomic contexts.
///
/// [`struct mutex`]: ../../../include/linux/mutex.h
pub struct Mutex<T: ?Sized> {
    /// The kernel `struct mutex` object.
    mutex: Opaque<bindings::mutex>,

    /// A mutex needs to be pinned because it contains a [`struct list_head`] that is
    /// self-referential, so it cannot be safely moved once it is initialised.
    _pin: PhantomPinned,

    /// The data protected by the mutex.
    data: UnsafeCell<T>,
}

// SAFETY: `Mutex` can be transferred across thread boundaries iff the data it protects can.
#[allow(clippy::non_send_fields_in_send_ty)]
unsafe impl<T: ?Sized + Send> Send for Mutex<T> {}

// SAFETY: `Mutex` serialises the interior mutability it provides, so it is `Sync` as long as the
// data it protects is `Send`.
unsafe impl<T: ?Sized + Send> Sync for Mutex<T> {}

impl<T> Mutex<T> {
    /// Constructs a new mutex.
    ///
    /// # Safety
    ///
    /// The caller must call [`Mutex::init_lock`] before using the mutex.
    pub const unsafe fn new(t: T) -> Self {
        Self {
            mutex: Opaque::uninit(),
            data: UnsafeCell::new(t),
            _pin: PhantomPinned,
        }
    }
}

impl<T: ?Sized> Mutex<T> {
    /// Locks the mutex and gives the caller access to the data protected by it. Only one thread at
    /// a time is allowed to access the protected data.
    pub fn lock(&self) -> Guard<'_, Self> {
        let ctx = self.lock_noguard();
        // SAFETY: The mutex was just acquired.
        unsafe { Guard::new(self, ctx) }
    }
}

impl<T> LockFactory for Mutex<T> {
    type LockedType<U> = Mutex<U>;

    unsafe fn new_lock<U>(data: U) -> Mutex<U> {
        // SAFETY: The safety requirements of `new_lock` also require that `init_lock` be called.
        unsafe { Mutex::new(data) }
    }
}

impl<T> LockIniter for Mutex<T> {
    fn init_lock(self: Pin<&mut Self>, name: &'static CStr, key: &'static LockClassKey) {
        unsafe { bindings::__mutex_init(self.mutex.get(), name.as_char_ptr(), key.get()) };
    }
}

pub struct EmptyGuardContext;

// SAFETY: The underlying kernel `struct mutex` object ensures mutual exclusion.
unsafe impl<T: ?Sized> Lock for Mutex<T> {
    type Inner = T;
    type GuardContext = EmptyGuardContext;

    fn lock_noguard(&self) -> EmptyGuardContext {
        // SAFETY: `mutex` points to valid memory.
        unsafe { bindings::mutex_lock(self.mutex.get()) };
        EmptyGuardContext
    }

    unsafe fn unlock(&self, _: &mut EmptyGuardContext) {
        // SAFETY: The safety requirements of the function ensure that the mutex is owned by the
        // caller.
        unsafe { bindings::mutex_unlock(self.mutex.get()) };
    }

    fn locked_data(&self) -> &UnsafeCell<T> {
        &self.data
    }
}

/// A revocable mutex.
///
/// That is, a mutex to which access can be revoked at runtime. It is a specialisation of the more
/// generic [`super::revocable::Revocable`].
///
/// # Examples
///
/// ```
/// # use kernel::sync::RevocableMutex;
/// # use kernel::revocable_init;
/// # use core::pin::Pin;
///
/// struct Example {
///     a: u32,
///     b: u32,
/// }
///
/// fn read_sum(v: &RevocableMutex<Example>) -> Option<u32> {
///     let guard = v.try_write()?;
///     Some(guard.a + guard.b)
/// }
///
/// // SAFETY: We call `revocable_init` immediately below.
/// let mut v = unsafe { RevocableMutex::new(Example { a: 10, b: 20 }) };
/// // SAFETY: We never move out of `v`.
/// let pinned = unsafe { Pin::new_unchecked(&mut v) };
/// revocable_init!(pinned, "example::v");
/// assert_eq!(read_sum(&v), Some(30));
/// v.revoke();
/// assert_eq!(read_sum(&v), None);
/// ```
pub type RevocableMutex<T> = super::revocable::Revocable<Mutex<()>, T>;

/// A guard for a revocable mutex.
pub type RevocableMutexGuard<'a, T, I = WriteLock> =
    super::revocable::RevocableGuard<'a, Mutex<()>, T, I>;