1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
// SPDX-License-Identifier: GPL-2.0

//! Generic support for drivers of different buses (e.g., PCI, Platform, Amba, etc.).
//!
//! Each bus/subsystem is expected to implement [`DriverOps`], which allows drivers to register
//! using the [`Registration`] class.

use crate::{error::code::*, str::CStr, sync::Ref, Result, ThisModule};
use alloc::boxed::Box;
use core::{cell::UnsafeCell, marker::PhantomData, ops::Deref, pin::Pin};

/// A subsystem (e.g., PCI, Platform, Amba, etc.) that allows drivers to be written for it.
pub trait DriverOps {
    /// The type that holds information about the registration. This is typically a struct defined
    /// by the C portion of the kernel.
    type RegType: Default;

    /// Registers a driver.
    ///
    /// # Safety
    ///
    /// `reg` must point to valid, initialised, and writable memory. It may be modified by this
    /// function to hold registration state.
    ///
    /// On success, `reg` must remain pinned and valid until the matching call to
    /// [`DriverOps::unregister`].
    unsafe fn register(
        reg: *mut Self::RegType,
        name: &'static CStr,
        module: &'static ThisModule,
    ) -> Result;

    /// Unregisters a driver previously registered with [`DriverOps::register`].
    ///
    /// # Safety
    ///
    /// `reg` must point to valid writable memory, initialised by a previous successful call to
    /// [`DriverOps::register`].
    unsafe fn unregister(reg: *mut Self::RegType);
}

/// The registration of a driver.
pub struct Registration<T: DriverOps> {
    is_registered: bool,
    concrete_reg: UnsafeCell<T::RegType>,
}

// SAFETY: `Registration` has no fields or methods accessible via `&Registration`, so it is safe to
// share references to it with multiple threads as nothing can be done.
unsafe impl<T: DriverOps> Sync for Registration<T> {}

impl<T: DriverOps> Registration<T> {
    /// Creates a new instance of the registration object.
    pub fn new() -> Self {
        Self {
            is_registered: false,
            concrete_reg: UnsafeCell::new(T::RegType::default()),
        }
    }

    /// Allocates a pinned registration object and registers it.
    ///
    /// Returns a pinned heap-allocated representation of the registration.
    pub fn new_pinned(name: &'static CStr, module: &'static ThisModule) -> Result<Pin<Box<Self>>> {
        let mut reg = Pin::from(Box::try_new(Self::new())?);
        reg.as_mut().register(name, module)?;
        Ok(reg)
    }

    /// Registers a driver with its subsystem.
    ///
    /// It must be pinned because the memory block that represents the registration is potentially
    /// self-referential.
    pub fn register(
        self: Pin<&mut Self>,
        name: &'static CStr,
        module: &'static ThisModule,
    ) -> Result {
        // SAFETY: We never move out of `this`.
        let this = unsafe { self.get_unchecked_mut() };
        if this.is_registered {
            // Already registered.
            return Err(EINVAL);
        }

        // SAFETY: `concrete_reg` was initialised via its default constructor. It is only freed
        // after `Self::drop` is called, which first calls `T::unregister`.
        unsafe { T::register(this.concrete_reg.get(), name, module) }?;

        this.is_registered = true;
        Ok(())
    }
}

impl<T: DriverOps> Default for Registration<T> {
    fn default() -> Self {
        Self::new()
    }
}

impl<T: DriverOps> Drop for Registration<T> {
    fn drop(&mut self) {
        if self.is_registered {
            // SAFETY: This path only runs if a previous call to `T::register` completed
            // successfully.
            unsafe { T::unregister(self.concrete_reg.get()) };
        }
    }
}

/// Conversion from a device id to a raw device id.
///
/// This is meant to be implemented by buses/subsystems so that they can use [`IdTable`] to
/// guarantee (at compile-time) zero-termination of device id tables provided by drivers.
///
/// # Safety
///
/// Implementers must ensure that:
///   - [`RawDeviceId::ZERO`] is actually a zeroed-out version of the raw device id.
///   - [`RawDeviceId::to_rawid`] stores `offset` in the context/data field of the raw device id so
///     that buses can recover the pointer to the data.
pub unsafe trait RawDeviceId {
    /// The raw type that holds the device id.
    ///
    /// Id tables created from [`Self`] are going to hold this type in its zero-terminated array.
    type RawType: Copy;

    /// A zeroed-out representation of the raw device id.
    ///
    /// Id tables created from [`Self`] use [`Self::ZERO`] as the sentinel to indicate the end of
    /// the table.
    const ZERO: Self::RawType;

    /// Converts an id into a raw id.
    ///
    /// `offset` is the offset from the memory location where the raw device id is stored to the
    /// location where its associated context information is stored. Implementations must store
    /// this in the appropriate context/data field of the raw type.
    fn to_rawid(&self, offset: isize) -> Self::RawType;
}

/// A zero-terminated device id array, followed by context data.
#[repr(C)]
pub struct IdArray<T: RawDeviceId, U, const N: usize> {
    ids: [T::RawType; N],
    sentinel: T::RawType,
    id_infos: [Option<U>; N],
}

impl<T: RawDeviceId, U, const N: usize> IdArray<T, U, N> {
    /// Creates a new instance of the array.
    ///
    /// The contents are derived from the given identifiers and context information.
    pub const fn new(ids: [T; N], infos: [Option<U>; N]) -> Self
    where
        T: ~const RawDeviceId + Copy,
    {
        let mut array = Self {
            ids: [T::ZERO; N],
            sentinel: T::ZERO,
            id_infos: infos,
        };
        let mut i = 0usize;
        while i < N {
            // SAFETY: Both pointers are within `array` (or one byte beyond), consequently they are
            // derived from the same allocated object. We are using a `u8` pointer, whose size 1,
            // so the pointers are necessarily 1-byte aligned.
            let offset = unsafe {
                (&array.id_infos[i] as *const _ as *const u8)
                    .offset_from(&array.ids[i] as *const _ as _)
            };
            array.ids[i] = ids[i].to_rawid(offset);
            i += 1;
        }
        array
    }

    /// Returns an `IdTable` backed by `self`.
    ///
    /// This is used to essentially erase the array size.
    pub const fn as_table(&self) -> IdTable<'_, T, U> {
        IdTable {
            first: &self.ids[0],
            _p: PhantomData,
        }
    }
}

/// A device id table.
///
/// The table is guaranteed to be zero-terminated and to be followed by an array of context data of
/// type `Option<U>`.
pub struct IdTable<'a, T: RawDeviceId, U> {
    first: &'a T::RawType,
    _p: PhantomData<&'a U>,
}

impl<T: RawDeviceId, U> const AsRef<T::RawType> for IdTable<'_, T, U> {
    fn as_ref(&self) -> &T::RawType {
        self.first
    }
}

/// Counts the number of parenthesis-delimited, comma-separated items.
///
/// # Examples
///
/// ```
/// # use kernel::count_paren_items;
///
/// assert_eq!(0, count_paren_items!());
/// assert_eq!(1, count_paren_items!((A)));
/// assert_eq!(1, count_paren_items!((A),));
/// assert_eq!(2, count_paren_items!((A), (B)));
/// assert_eq!(2, count_paren_items!((A), (B),));
/// assert_eq!(3, count_paren_items!((A), (B), (C)));
/// assert_eq!(3, count_paren_items!((A), (B), (C),));
/// ```
#[macro_export]
macro_rules! count_paren_items {
    (($($item:tt)*), $($remaining:tt)*) => { 1 + $crate::count_paren_items!($($remaining)*) };
    (($($item:tt)*)) => { 1 };
    () => { 0 };
}

/// Converts a comma-separated list of pairs into an array with the first element. That is, it
/// discards the second element of the pair.
///
/// Additionally, it automatically introduces a type if the first element is warpped in curly
/// braces, for example, if it's `{v: 10}`, it becomes `X { v: 10 }`; this is to avoid repeating
/// the type.
///
/// # Examples
///
/// ```
/// # use kernel::first_item;
///
/// #[derive(PartialEq, Debug)]
/// struct X {
///     v: u32,
/// }
///
/// assert_eq!([] as [X; 0], first_item!(X, ));
/// assert_eq!([X { v: 10 }], first_item!(X, ({ v: 10 }, Y)));
/// assert_eq!([X { v: 10 }], first_item!(X, ({ v: 10 }, Y),));
/// assert_eq!([X { v: 10 }], first_item!(X, (X { v: 10 }, Y)));
/// assert_eq!([X { v: 10 }], first_item!(X, (X { v: 10 }, Y),));
/// assert_eq!([X { v: 10 }, X { v: 20 }], first_item!(X, ({ v: 10 }, Y), ({ v: 20 }, Y)));
/// assert_eq!([X { v: 10 }, X { v: 20 }], first_item!(X, ({ v: 10 }, Y), ({ v: 20 }, Y),));
/// assert_eq!([X { v: 10 }, X { v: 20 }], first_item!(X, (X { v: 10 }, Y), (X { v: 20 }, Y)));
/// assert_eq!([X { v: 10 }, X { v: 20 }], first_item!(X, (X { v: 10 }, Y), (X { v: 20 }, Y),));
/// assert_eq!([X { v: 10 }, X { v: 20 }, X { v: 30 }],
///            first_item!(X, ({ v: 10 }, Y), ({ v: 20 }, Y), ({v: 30}, Y)));
/// assert_eq!([X { v: 10 }, X { v: 20 }, X { v: 30 }],
///            first_item!(X, ({ v: 10 }, Y), ({ v: 20 }, Y), ({v: 30}, Y),));
/// assert_eq!([X { v: 10 }, X { v: 20 }, X { v: 30 }],
///            first_item!(X, (X { v: 10 }, Y), (X { v: 20 }, Y), (X {v: 30}, Y)));
/// assert_eq!([X { v: 10 }, X { v: 20 }, X { v: 30 }],
///            first_item!(X, (X { v: 10 }, Y), (X { v: 20 }, Y), (X {v: 30}, Y),));
/// ```
#[macro_export]
macro_rules! first_item {
    ($id_type:ty, $(({$($first:tt)*}, $second:expr)),* $(,)?) => {
        {
            type IdType = $id_type;
            [$(IdType{$($first)*},)*]
        }
    };
    ($id_type:ty, $(($first:expr, $second:expr)),* $(,)?) => { [$($first,)*] };
}

/// Converts a comma-separated list of pairs into an array with the second element. That is, it
/// discards the first element of the pair.
///
/// # Examples
///
/// ```
/// # use kernel::second_item;
///
/// assert_eq!([] as [u32; 0], second_item!());
/// assert_eq!([10u32], second_item!((X, 10u32)));
/// assert_eq!([10u32], second_item!((X, 10u32),));
/// assert_eq!([10u32], second_item!(({ X }, 10u32)));
/// assert_eq!([10u32], second_item!(({ X }, 10u32),));
/// assert_eq!([10u32, 20], second_item!((X, 10u32), (X, 20)));
/// assert_eq!([10u32, 20], second_item!((X, 10u32), (X, 20),));
/// assert_eq!([10u32, 20], second_item!(({ X }, 10u32), ({ X }, 20)));
/// assert_eq!([10u32, 20], second_item!(({ X }, 10u32), ({ X }, 20),));
/// assert_eq!([10u32, 20, 30], second_item!((X, 10u32), (X, 20), (X, 30)));
/// assert_eq!([10u32, 20, 30], second_item!((X, 10u32), (X, 20), (X, 30),));
/// assert_eq!([10u32, 20, 30], second_item!(({ X }, 10u32), ({ X }, 20), ({ X }, 30)));
/// assert_eq!([10u32, 20, 30], second_item!(({ X }, 10u32), ({ X }, 20), ({ X }, 30),));
/// ```
#[macro_export]
macro_rules! second_item {
    ($(({$($first:tt)*}, $second:expr)),* $(,)?) => { [$($second,)*] };
    ($(($first:expr, $second:expr)),* $(,)?) => { [$($second,)*] };
}

/// Defines a new constant [`IdArray`] with a concise syntax.
///
/// It is meant to be used by buses and subsystems to create a similar macro with their device id
/// type already specified, i.e., with fewer parameters to the end user.
///
/// # Examples
///
// TODO: Exported but not usable by kernel modules (requires `const_trait_impl`).
/// ```ignore
/// #![feature(const_trait_impl)]
/// # use kernel::{define_id_array, driver::RawDeviceId};
///
/// #[derive(Copy, Clone)]
/// struct Id(u32);
///
/// // SAFETY: `ZERO` is all zeroes and `to_rawid` stores `offset` as the second element of the raw
/// // device id pair.
/// unsafe impl const RawDeviceId for Id {
///     type RawType = (u64, isize);
///     const ZERO: Self::RawType = (0, 0);
///     fn to_rawid(&self, offset: isize) -> Self::RawType {
///         (self.0 as u64 + 1, offset)
///     }
/// }
///
/// define_id_array!(A1, Id, (), []);
/// define_id_array!(A2, Id, &'static [u8], [(Id(10), None)]);
/// define_id_array!(A3, Id, &'static [u8], [(Id(10), Some(b"id1")), ]);
/// define_id_array!(A4, Id, &'static [u8], [(Id(10), Some(b"id1")), (Id(20), Some(b"id2"))]);
/// define_id_array!(A5, Id, &'static [u8], [(Id(10), Some(b"id1")), (Id(20), Some(b"id2")), ]);
/// define_id_array!(A6, Id, &'static [u8], [(Id(10), None), (Id(20), Some(b"id2")), ]);
/// define_id_array!(A7, Id, &'static [u8], [(Id(10), Some(b"id1")), (Id(20), None), ]);
/// define_id_array!(A8, Id, &'static [u8], [(Id(10), None), (Id(20), None), ]);
/// ```
#[macro_export]
macro_rules! define_id_array {
    ($table_name:ident, $id_type:ty, $data_type:ty, [ $($t:tt)* ]) => {
        const $table_name:
            $crate::driver::IdArray<$id_type, $data_type, { $crate::count_paren_items!($($t)*) }> =
                $crate::driver::IdArray::new(
                    $crate::first_item!($id_type, $($t)*), $crate::second_item!($($t)*));
    };
}

/// Defines a new constant [`IdTable`] with a concise syntax.
///
/// It is meant to be used by buses and subsystems to create a similar macro with their device id
/// type already specified, i.e., with fewer parameters to the end user.
///
/// # Examples
///
// TODO: Exported but not usable by kernel modules (requires `const_trait_impl`).
/// ```ignore
/// #![feature(const_trait_impl)]
/// # use kernel::{define_id_table, driver::RawDeviceId};
///
/// #[derive(Copy, Clone)]
/// struct Id(u32);
///
/// // SAFETY: `ZERO` is all zeroes and `to_rawid` stores `offset` as the second element of the raw
/// // device id pair.
/// unsafe impl const RawDeviceId for Id {
///     type RawType = (u64, isize);
///     const ZERO: Self::RawType = (0, 0);
///     fn to_rawid(&self, offset: isize) -> Self::RawType {
///         (self.0 as u64 + 1, offset)
///     }
/// }
///
/// define_id_table!(T1, Id, &'static [u8], [(Id(10), None)]);
/// define_id_table!(T2, Id, &'static [u8], [(Id(10), Some(b"id1")), ]);
/// define_id_table!(T3, Id, &'static [u8], [(Id(10), Some(b"id1")), (Id(20), Some(b"id2"))]);
/// define_id_table!(T4, Id, &'static [u8], [(Id(10), Some(b"id1")), (Id(20), Some(b"id2")), ]);
/// define_id_table!(T5, Id, &'static [u8], [(Id(10), None), (Id(20), Some(b"id2")), ]);
/// define_id_table!(T6, Id, &'static [u8], [(Id(10), Some(b"id1")), (Id(20), None), ]);
/// define_id_table!(T7, Id, &'static [u8], [(Id(10), None), (Id(20), None), ]);
/// ```
#[macro_export]
macro_rules! define_id_table {
    ($table_name:ident, $id_type:ty, $data_type:ty, [ $($t:tt)* ]) => {
        const $table_name: Option<$crate::driver::IdTable<'static, $id_type, $data_type>> = {
            $crate::define_id_array!(ARRAY, $id_type, $data_type, [ $($t)* ]);
            Some(ARRAY.as_table())
        };
    };
}

/// Custom code within device removal.
pub trait DeviceRemoval {
    /// Cleans resources up when the device is removed.
    ///
    /// This is called when a device is removed and offers implementers the chance to run some code
    /// that cleans state up.
    fn device_remove(&self);
}

impl DeviceRemoval for () {
    fn device_remove(&self) {}
}

impl<T: DeviceRemoval> DeviceRemoval for Ref<T> {
    fn device_remove(&self) {
        self.deref().device_remove();
    }
}

impl<T: DeviceRemoval> DeviceRemoval for Box<T> {
    fn device_remove(&self) {
        self.deref().device_remove();
    }
}

/// A kernel module that only registers the given driver on init.
///
/// This is a helper struct to make it easier to define single-functionality modules, in this case,
/// modules that offer a single driver.
pub struct Module<T: DriverOps> {
    _driver: Pin<Box<Registration<T>>>,
}

impl<T: DriverOps> crate::Module for Module<T> {
    fn init(name: &'static CStr, module: &'static ThisModule) -> Result<Self> {
        Ok(Self {
            _driver: Registration::new_pinned(name, module)?,
        })
    }
}

/// Declares a kernel module that exposes a single driver.
///
/// It is meant to be used as a helper by other subsystems so they can more easily expose their own
/// macros.
#[macro_export]
macro_rules! module_driver {
    (<$gen_type:ident>, $driver_ops:ty, { type: $type:ty, $($f:tt)* }) => {
        type Ops<$gen_type> = $driver_ops;
        type ModuleType = $crate::driver::Module<Ops<$type>>;
        $crate::prelude::module! {
            type: ModuleType,
            $($f)*
        }
    }
}
This documentation is an old archive. Please see https://rust.docs.kernel.org instead.