1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
// SPDX-License-Identifier: GPL-2.0

//! Kernel support for executing futures in C workqueues (`struct workqueue_struct`).

use super::{AutoStopHandle, RefWake};
use crate::{
    error::code::*,
    mutex_init,
    revocable::AsyncRevocable,
    sync::{LockClassKey, Mutex, Ref, RefBorrow, UniqueRef},
    unsafe_list,
    workqueue::{BoxedQueue, Queue, Work, WorkAdapter},
    Either, Left, Result, Right,
};
use core::{cell::UnsafeCell, future::Future, marker::PhantomPinned, pin::Pin, task::Context};

trait RevocableTask {
    fn revoke(&self);
    fn flush(self: Ref<Self>);
    fn to_links(&self) -> &unsafe_list::Links<dyn RevocableTask>;
}

// SAFETY: `Task` has a single `links` field and only one adapter.
unsafe impl unsafe_list::Adapter for dyn RevocableTask {
    type EntryType = dyn RevocableTask;
    fn to_links(obj: &dyn RevocableTask) -> &unsafe_list::Links<dyn RevocableTask> {
        obj.to_links()
    }
}

struct Task<T: 'static + Send + Future> {
    links: unsafe_list::Links<dyn RevocableTask>,
    executor: Ref<Executor>,
    work: Work,
    future: AsyncRevocable<UnsafeCell<T>>,
}

// SAFETY: The `future` field is only used by one thread at a time (in the `poll` method, which is
// called by the work queue, who guarantees no reentrancy), so a task is `Sync` as long as the
// future is `Send`.
unsafe impl<T: 'static + Send + Future> Sync for Task<T> {}

// SAFETY: If the future `T` is `Send`, so is the task.
unsafe impl<T: 'static + Send + Future> Send for Task<T> {}

impl<T: 'static + Send + Future> Task<T> {
    fn try_new(
        executor: Ref<Executor>,
        key: &'static LockClassKey,
        future: T,
    ) -> Result<Ref<Self>> {
        let task = UniqueRef::try_new(Self {
            executor: executor.clone(),
            links: unsafe_list::Links::new(),
            // SAFETY: `work` is initialised below.
            work: unsafe { Work::new() },
            future: AsyncRevocable::new(UnsafeCell::new(future)),
        })?;

        Work::init(&task, key);

        let task = Ref::from(task);

        // Add task to list.
        {
            let mut guard = executor.inner.lock();
            if guard.stopped {
                return Err(EINVAL);
            }

            // Convert one reference into a pointer so that we hold on to a ref count while the
            // task is in the list.
            Ref::into_raw(task.clone());

            // SAFETY: The task was just created, so it is not in any other lists. It remains alive
            // because we incremented the refcount to account for it being in the list. It never
            // moves because it's pinned behind a `Ref`.
            unsafe { guard.tasks.push_back(&*task) };
        }

        Ok(task)
    }
}

unsafe impl<T: 'static + Send + Future> WorkAdapter for Task<T> {
    type Target = Self;
    const FIELD_OFFSET: isize = crate::offset_of!(Self, work);
    fn run(task: Ref<Task<T>>) {
        let waker = super::ref_waker(task.clone());
        let mut ctx = Context::from_waker(&waker);

        let guard = if let Some(g) = task.future.try_access() {
            g
        } else {
            return;
        };

        // SAFETY: `future` is pinned when the task is. The task is pinned because it's behind a
        // `Ref`, which is always pinned.
        //
        // Work queues guarantee no reentrancy and this is the only place where the future is
        // dereferenced, so it's ok to do it mutably.
        let future = unsafe { Pin::new_unchecked(&mut *guard.get()) };
        if future.poll(&mut ctx).is_ready() {
            drop(guard);
            task.revoke();
        }
    }
}

impl<T: 'static + Send + Future> super::Task for Task<T> {
    fn sync_stop(self: Ref<Self>) {
        self.revoke();
        self.flush();
    }
}

impl<T: 'static + Send + Future> RevocableTask for Task<T> {
    fn revoke(&self) {
        if !self.future.revoke() {
            // Nothing to do if the task was already revoked.
            return;
        }

        // SAFETY: The object is inserted into the list on creation and only removed when the
        // future is first revoked. (Subsequent revocations don't result in additional attempts
        // to remove per the check above.)
        unsafe { self.executor.inner.lock().tasks.remove(self) };

        // Decrement the refcount now that the task is no longer in the list.
        //
        // SAFETY: `into_raw` was called from `try_new` when the task was added to the list.
        unsafe { Ref::from_raw(self) };
    }

    fn flush(self: Ref<Self>) {
        self.work.cancel();
    }

    fn to_links(&self) -> &unsafe_list::Links<dyn RevocableTask> {
        &self.links
    }
}

impl<T: 'static + Send + Future> RefWake for Task<T> {
    fn wake(self: Ref<Self>) {
        if self.future.is_revoked() {
            return;
        }

        match &self.executor.queue {
            Left(q) => &**q,
            Right(q) => *q,
        }
        .enqueue(self.clone());
    }

    fn wake_by_ref(self: RefBorrow<'_, Self>) {
        Ref::from(self).wake();
    }
}

struct ExecutorInner {
    stopped: bool,
    tasks: unsafe_list::List<dyn RevocableTask>,
}

/// An executor backed by a work queue.
///
/// # Examples
///
/// The following example runs two tasks on the shared system workqueue.
///
/// ```
/// # use kernel::prelude::*;
/// use kernel::kasync::executor::workqueue::Executor;
/// use kernel::spawn_task;
/// use kernel::workqueue;
///
/// fn example_shared_workqueue() -> Result {
///     let mut handle = Executor::try_new(workqueue::system())?;
///     spawn_task!(handle.executor(), async {
///         pr_info!("First workqueue task\n");
///     })?;
///     spawn_task!(handle.executor(), async {
///         pr_info!("Second workqueue task\n");
///     })?;
///     handle.detach();
///     Ok(())
/// }
///
/// # example_shared_workqueue().unwrap();
/// ```
pub struct Executor {
    queue: Either<BoxedQueue, &'static Queue>,
    inner: Mutex<ExecutorInner>,
    _pin: PhantomPinned,
}

// SAFETY: The executor is backed by a kernel `struct workqueue_struct`, which works from any
// thread.
unsafe impl Send for Executor {}

// SAFETY: The executor is backed by a kernel `struct workqueue_struct`, which can be used
// concurrently by multiple threads.
unsafe impl Sync for Executor {}

impl Executor {
    /// Creates a new workqueue-based executor using a static work queue.
    pub fn try_new(wq: &'static Queue) -> Result<AutoStopHandle<Self>> {
        Self::new_internal(Right(wq))
    }

    /// Creates a new workqueue-based executor using an owned (boxed) work queue.
    pub fn try_new_owned(wq: BoxedQueue) -> Result<AutoStopHandle<Self>> {
        Self::new_internal(Left(wq))
    }

    /// Creates a new workqueue-based executor.
    ///
    /// It uses the given work queue to run its tasks.
    fn new_internal(queue: Either<BoxedQueue, &'static Queue>) -> Result<AutoStopHandle<Self>> {
        let mut e = Pin::from(UniqueRef::try_new(Self {
            queue,
            _pin: PhantomPinned,
            // SAFETY: `mutex_init` is called below.
            inner: unsafe {
                Mutex::new(ExecutorInner {
                    stopped: false,
                    tasks: unsafe_list::List::new(),
                })
            },
        })?);
        // SAFETY: `tasks` is pinned when the executor is.
        let pinned = unsafe { e.as_mut().map_unchecked_mut(|e| &mut e.inner) };
        mutex_init!(pinned, "Executor::inner");

        Ok(AutoStopHandle::new(e.into()))
    }
}

impl super::Executor for Executor {
    fn spawn(
        self: RefBorrow<'_, Self>,
        key: &'static LockClassKey,
        future: impl Future + 'static + Send,
    ) -> Result<Ref<dyn super::Task>> {
        let task = Task::try_new(self.into(), key, future)?;
        task.clone().wake();
        Ok(task)
    }

    fn stop(&self) {
        // Set the `stopped` flag.
        self.inner.lock().stopped = true;

        // Go through all tasks and revoke & flush them.
        //
        // N.B. If we decide to allow "asynchronous" stops, we need to ensure that tasks that have
        // been revoked but not flushed yet remain in the list so that we can flush them here.
        // Otherwise we may have a race where we may have a running task (was revoked while
        // running) that isn't the list anymore, so we think we've synchronously stopped all tasks
        // when we haven't really -- unloading a module in this situation leads to memory safety
        // issues (running unloaded code).
        loop {
            let guard = self.inner.lock();

            let front = if let Some(t) = guard.tasks.front() {
                t
            } else {
                break;
            };

            // Get a new reference to the task.
            //
            // SAFETY: We know all entries in the list are of type `Ref<dyn RevocableTask>` and
            // that a reference exists while the entry is in the list, and since we are holding the
            // list lock, we know it cannot go away. The `into_raw` call below ensures that we
            // don't decrement the refcount accidentally.
            let tasktmp = unsafe { Ref::<dyn RevocableTask>::from_raw(front.as_ptr()) };
            let task = tasktmp.clone();
            Ref::into_raw(tasktmp);

            // Release the mutex before revoking the task.
            drop(guard);

            task.revoke();
            task.flush();
        }
    }
}