1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
// SPDX-License-Identifier: GPL-2.0
//! Work queues.
//!
//! C header: [`include/linux/workqueue.h`](../../../../include/linux/workqueue.h)
use crate::{
bindings, c_str,
error::code::*,
sync::{LockClassKey, Ref, UniqueRef},
Opaque, Result,
};
use core::{fmt, ops::Deref, ptr::NonNull};
/// Spawns a new work item to run in the work queue.
///
/// It also automatically defines a new lockdep lock class for the work item.
#[macro_export]
macro_rules! spawn_work_item {
($queue:expr, $func:expr) => {{
static CLASS: $crate::sync::LockClassKey = $crate::sync::LockClassKey::new();
$crate::workqueue::Queue::try_spawn($queue, &CLASS, $func)
}};
}
/// Implements the [`WorkAdapter`] trait for a type where its [`Work`] instance is a field.
///
/// # Examples
///
/// ```
/// # use kernel::workqueue::Work;
///
/// struct Example {
/// work: Work,
/// }
///
/// kernel::impl_self_work_adapter!(Example, work, |_| {});
/// ```
#[macro_export]
macro_rules! impl_self_work_adapter {
($work_type:ty, $field:ident, $closure:expr) => {
$crate::impl_work_adapter!($work_type, $work_type, $field, $closure);
};
}
/// Implements the [`WorkAdapter`] trait for an adapter type.
///
/// # Examples
///
/// ```
/// # use kernel::workqueue::Work;
///
/// struct Example {
/// work: Work,
/// }
///
/// struct Adapter;
///
/// kernel::impl_work_adapter!(Adapter, Example, work, |_| {});
/// ```
#[macro_export]
macro_rules! impl_work_adapter {
($adapter:ty, $work_type:ty, $field:ident, $closure:expr) => {
// SAFETY: We use `offset_of` to ensure that the field is within the given type, and we
// also check its type is `Work`.
unsafe impl $crate::workqueue::WorkAdapter for $adapter {
type Target = $work_type;
const FIELD_OFFSET: isize = $crate::offset_of!(Self::Target, $field);
fn run(w: $crate::sync::Ref<Self::Target>) {
let closure: fn($crate::sync::Ref<Self::Target>) = $closure;
closure(w);
return;
// Checks that the type of the field is actually `Work`.
let tmp = core::mem::MaybeUninit::<$work_type>::uninit();
// SAFETY: The pointer is valid and aligned, just not initialised; `addr_of`
// ensures that we don't actually read from it (which would be UB) nor create an
// intermediate reference.
let _x: *const $crate::workqueue::Work =
unsafe { core::ptr::addr_of!((*tmp.as_ptr()).$field) };
}
}
};
}
/// Initialises a work item.
///
/// It automatically defines a new lockdep lock class for the work item.
#[macro_export]
macro_rules! init_work_item {
($work_container:expr) => {{
static CLASS: $crate::sync::LockClassKey = $crate::sync::LockClassKey::new();
$crate::workqueue::Work::init($work_container, &CLASS)
}};
}
/// Initialises a work item with the given adapter.
///
/// It automatically defines a new lockdep lock class for the work item.
#[macro_export]
macro_rules! init_work_item_adapter {
($adapter:ty, $work_container:expr) => {{
static CLASS: $crate::sync::LockClassKey = $crate::sync::LockClassKey::new();
$crate::workqueue::Work::init_with_adapter::<$adapter>($work_container, &CLASS)
}};
}
/// A kernel work queue.
///
/// Wraps the kernel's C `struct workqueue_struct`.
///
/// It allows work items to be queued to run on thread pools managed by the kernel. Several are
/// always available, for example, the ones returned by [`system`], [`system_highpri`],
/// [`system_long`], etc.
///
/// # Examples
///
/// The following example is the simplest way to launch a work item:
///
/// ```
/// # use kernel::{spawn_work_item, workqueue};
///
/// # fn example() -> Result {
/// spawn_work_item!(workqueue::system(), || pr_info!("Hello from a work item\n"))?;
/// # Ok(())
/// # }
///
/// # example().unwrap()
/// ```
///
/// The following example is used to create a work item and enqueue it several times. We note that
/// enqueuing while the work item is already queued is a no-op, so we enqueue it when it is not
/// enqueued yet.
///
/// ```
/// # use kernel::workqueue::{self, Work};
/// use core::sync::atomic::{AtomicU32, Ordering};
/// use kernel::sync::UniqueRef;
///
/// struct Example {
/// count: AtomicU32,
/// work: Work,
/// }
///
/// kernel::impl_self_work_adapter!(Example, work, |w| {
/// let count = w.count.fetch_add(1, Ordering::Relaxed);
/// pr_info!("Called with count={}\n", count);
///
/// // Queue again if the count is less than 10.
/// if count < 10 {
/// workqueue::system().enqueue(w);
/// }
/// });
///
/// # fn example() -> Result {
/// let e = UniqueRef::try_new(Example {
/// count: AtomicU32::new(0),
/// // SAFETY: `work` is initialised below.
/// work: unsafe { Work::new() },
/// })?;
///
/// kernel::init_work_item!(&e);
///
/// // Queue the first time.
/// workqueue::system().enqueue(e.into());
/// # Ok(())
/// # }
///
/// # example().unwrap()
/// ```
///
/// The following example has two different work items in the same struct, which allows it to be
/// queued twice.
///
/// ```
/// # use kernel::workqueue::{self, Work, WorkAdapter};
/// use core::sync::atomic::{AtomicU32, Ordering};
/// use kernel::sync::{Ref, UniqueRef};
///
/// struct Example {
/// work1: Work,
/// work2: Work,
/// }
///
/// kernel::impl_self_work_adapter!(Example, work1, |_| pr_info!("First work\n"));
///
/// struct SecondAdapter;
/// kernel::impl_work_adapter!(SecondAdapter, Example, work2, |_| pr_info!("Second work\n"));
///
/// # fn example() -> Result {
/// let e = UniqueRef::try_new(Example {
/// // SAFETY: `work1` is initialised below.
/// work1: unsafe { Work::new() },
/// // SAFETY: `work2` is initialised below.
/// work2: unsafe { Work::new() },
/// })?;
///
/// kernel::init_work_item!(&e);
/// kernel::init_work_item_adapter!(SecondAdapter, &e);
///
/// let e = Ref::from(e);
///
/// // Enqueue the two different work items.
/// workqueue::system().enqueue(e.clone());
/// workqueue::system().enqueue_adapter::<SecondAdapter>(e);
/// # Ok(())
/// # }
///
/// # example().unwrap()
/// ```
#[repr(transparent)]
pub struct Queue(Opaque<bindings::workqueue_struct>);
// SAFETY: Kernel workqueues are usable from any thread.
unsafe impl Sync for Queue {}
impl Queue {
/// Tries to allocate a new work queue.
///
/// Callers should first consider using one of the existing ones (e.g. [`system`]) before
/// deciding to create a new one.
pub fn try_new(name: fmt::Arguments<'_>) -> Result<BoxedQueue> {
// SAFETY: We use a format string that requires an `fmt::Arguments` pointer as the first
// and only argument.
let ptr = unsafe {
bindings::alloc_workqueue(
c_str!("%pA").as_char_ptr(),
0,
0,
&name as *const _ as *const core::ffi::c_void,
)
};
if ptr.is_null() {
return Err(ENOMEM);
}
// SAFETY: `ptr` was just allocated and checked above, so it non-null and valid. Plus, it
// isn't touched after the call below, so ownership is transferred.
Ok(unsafe { BoxedQueue::new(ptr) })
}
/// Enqueues a work item.
///
/// Returns `true` if the work item was successfully enqueue; returns `false` if it had already
/// been (and continued to be) enqueued.
pub fn enqueue<T: WorkAdapter<Target = T>>(&self, w: Ref<T>) -> bool {
self.enqueue_adapter::<T>(w)
}
/// Enqueues a work item with an explicit adapter.
///
/// Returns `true` if the work item was successfully enqueue; returns `false` if it had already
/// been (and continued to be) enqueued.
pub fn enqueue_adapter<A: WorkAdapter + ?Sized>(&self, w: Ref<A::Target>) -> bool {
let ptr = Ref::into_raw(w);
let field_ptr =
(ptr as *const u8).wrapping_offset(A::FIELD_OFFSET) as *mut bindings::work_struct;
// SAFETY: Having a shared reference to work queue guarantees that it remains valid, while
// the work item remains valid because we called `into_raw` and only call `from_raw` again
// if the object was already queued (so a previous call already guarantees it remains
// alive), when the work item runs, or when the work item is canceled.
let ret = unsafe {
bindings::queue_work_on(bindings::WORK_CPU_UNBOUND as _, self.0.get(), field_ptr)
};
if !ret {
// SAFETY: `ptr` comes from a previous call to `into_raw`. Additionally, given that
// `queue_work_on` returned `false`, we know that no-one is going to use the result of
// `into_raw`, so we must drop it here to avoid a reference leak.
unsafe { Ref::from_raw(ptr) };
}
ret
}
/// Tries to spawn the given function or closure as a work item.
///
/// Users are encouraged to use [`spawn_work_item`] as it automatically defines the lock class
/// key to be used.
pub fn try_spawn<T: 'static + Send + Fn()>(
&self,
key: &'static LockClassKey,
func: T,
) -> Result {
let w = UniqueRef::<ClosureAdapter<T>>::try_new(ClosureAdapter {
// SAFETY: `work` is initialised below.
work: unsafe { Work::new() },
func,
})?;
Work::init(&w, key);
self.enqueue(w.into());
Ok(())
}
}
struct ClosureAdapter<T: Fn() + Send> {
work: Work,
func: T,
}
// SAFETY: `ClosureAdapter::work` is of type `Work`.
unsafe impl<T: Fn() + Send> WorkAdapter for ClosureAdapter<T> {
type Target = Self;
const FIELD_OFFSET: isize = crate::offset_of!(Self, work);
fn run(w: Ref<Self::Target>) {
(w.func)();
}
}
/// An adapter for work items.
///
/// For the most usual case where a type has a [`Work`] in it and is itself the adapter, it is
/// recommended that they use the [`impl_self_work_adapter`] or [`impl_work_adapter`] macros
/// instead of implementing the [`WorkAdapter`] manually. The great advantage is that they don't
/// require any unsafe blocks.
///
/// # Safety
///
/// Implementers must ensure that there is a [`Work`] instance `FIELD_OFFSET` bytes from the
/// beginning of a valid `Target` type. It is normally safe to use the [`crate::offset_of`] macro
/// for this.
pub unsafe trait WorkAdapter {
/// The type that this work adapter is meant to use.
type Target;
/// The offset, in bytes, from the beginning of [`Self::Target`] to the instance of [`Work`].
const FIELD_OFFSET: isize;
/// Runs when the work item is picked up for execution after it has been enqueued to some work
/// queue.
fn run(w: Ref<Self::Target>);
}
/// A work item.
///
/// Wraps the kernel's C `struct work_struct`.
///
/// Users must add a field of this type to a structure, then implement [`WorkAdapter`] so that it
/// can be queued for execution in a thread pool. Examples of it being used are available in the
/// documentation for [`Queue`].
#[repr(transparent)]
pub struct Work(Opaque<bindings::work_struct>);
impl Work {
/// Creates a new instance of [`Work`].
///
/// # Safety
///
/// Callers must call either [`Work::init`] or [`Work::init_with_adapter`] before the work item
/// can be used.
pub unsafe fn new() -> Self {
Self(Opaque::uninit())
}
/// Initialises the work item.
///
/// Users should prefer the [`init_work_item`] macro because it automatically defines a new
/// lock class key.
pub fn init<T: WorkAdapter<Target = T>>(obj: &UniqueRef<T>, key: &'static LockClassKey) {
Self::init_with_adapter::<T>(obj, key)
}
/// Initialises the work item with the given adapter.
///
/// Users should prefer the [`init_work_item_adapter`] macro because it automatically defines a
/// new lock class key.
pub fn init_with_adapter<A: WorkAdapter>(
obj: &UniqueRef<A::Target>,
key: &'static LockClassKey,
) {
let ptr = &**obj as *const _ as *const u8;
let field_ptr = ptr.wrapping_offset(A::FIELD_OFFSET) as *mut bindings::work_struct;
// SAFETY: `work` is valid for writes -- the `UniqueRef` instance guarantees that it has
// been allocated and there is only one pointer to it. Additionally, `work_func` is a valid
// callback for the work item.
unsafe {
bindings::__INIT_WORK_WITH_KEY(field_ptr, Some(Self::work_func::<A>), false, key.get())
};
}
/// Cancels the work item.
///
/// It is ok for this to be called when the work is not queued.
pub fn cancel(&self) {
// SAFETY: The work is valid (we have a reference to it), and the function can be called
// whether the work is queued or not.
if unsafe { bindings::cancel_work_sync(self.0.get()) } {
// SAFETY: When the work was queued, a call to `into_raw` was made. We just canceled
// the work without it having the chance to run, so we need to explicitly destroy this
// reference (which would have happened in `work_func` if it did run).
unsafe { Ref::from_raw(&*self) };
}
}
unsafe extern "C" fn work_func<A: WorkAdapter>(work: *mut bindings::work_struct) {
let field_ptr = work as *const _ as *const u8;
let ptr = field_ptr.wrapping_offset(-A::FIELD_OFFSET) as *const A::Target;
// SAFETY: This callback is only ever used by the `init_with_adapter` method, so it is
// always the case that the work item is embedded in a `Work` (Self) struct.
let w = unsafe { Ref::from_raw(ptr) };
A::run(w);
}
}
/// A boxed owned workqueue.
///
/// # Invariants
///
/// `ptr` is owned by this instance of [`BoxedQueue`], so it's always valid.
pub struct BoxedQueue {
ptr: NonNull<Queue>,
}
impl BoxedQueue {
/// Creates a new instance of [`BoxedQueue`].
///
/// # Safety
///
/// `ptr` must be non-null and valid. Additionally, ownership must be handed over to new
/// instance of [`BoxedQueue`].
unsafe fn new(ptr: *mut bindings::workqueue_struct) -> Self {
Self {
// SAFETY: We checked above that `ptr` is non-null.
ptr: unsafe { NonNull::new_unchecked(ptr.cast()) },
}
}
}
impl Deref for BoxedQueue {
type Target = Queue;
fn deref(&self) -> &Queue {
// SAFETY: The type invariants guarantee that `ptr` is always valid.
unsafe { self.ptr.as_ref() }
}
}
impl Drop for BoxedQueue {
fn drop(&mut self) {
// SAFETY: The type invariants guarantee that `ptr` is always valid.
unsafe { bindings::destroy_workqueue(self.ptr.as_ref().0.get()) };
}
}
/// Returns the system work queue (`system_wq`).
///
/// It is the one used by schedule\[_delayed\]_work\[_on\](). Multi-CPU multi-threaded. There are
/// users which expect relatively short queue flush time.
///
/// Callers shouldn't queue work items which can run for too long.
pub fn system() -> &'static Queue {
// SAFETY: `system_wq` is a C global, always available.
unsafe { &*bindings::system_wq.cast() }
}
/// Returns the system high-priority work queue (`system_highpri_wq`).
///
/// It is similar to the one returned by [`system`] but for work items which require higher
/// scheduling priority.
pub fn system_highpri() -> &'static Queue {
// SAFETY: `system_highpri_wq` is a C global, always available.
unsafe { &*bindings::system_highpri_wq.cast() }
}
/// Returns the system work queue for potentially long-running work items (`system_long_wq`).
///
/// It is similar to the one returned by [`system`] but may host long running work items. Queue
/// flushing might take relatively long.
pub fn system_long() -> &'static Queue {
// SAFETY: `system_long_wq` is a C global, always available.
unsafe { &*bindings::system_long_wq.cast() }
}
/// Returns the system unbound work queue (`system_unbound_wq`).
///
/// Workers are not bound to any specific CPU, not concurrency managed, and all queued work items
/// are executed immediately as long as `max_active` limit is not reached and resources are
/// available.
pub fn system_unbound() -> &'static Queue {
// SAFETY: `system_unbound_wq` is a C global, always available.
unsafe { &*bindings::system_unbound_wq.cast() }
}
/// Returns the system freezable work queue (`system_freezable_wq`).
///
/// It is equivalent to the one returned by [`system`] except that it's freezable.
pub fn system_freezable() -> &'static Queue {
// SAFETY: `system_freezable_wq` is a C global, always available.
unsafe { &*bindings::system_freezable_wq.cast() }
}
/// Returns the system power-efficient work queue (`system_power_efficient_wq`).
///
/// It is inclined towards saving power and is converted to "unbound" variants if the
/// `workqueue.power_efficient` kernel parameter is specified; otherwise, it is similar to the one
/// returned by [`system`].
pub fn system_power_efficient() -> &'static Queue {
// SAFETY: `system_power_efficient_wq` is a C global, always available.
unsafe { &*bindings::system_power_efficient_wq.cast() }
}
/// Returns the system freezable power-efficient work queue (`system_freezable_power_efficient_wq`).
///
/// It is similar to the one returned by [`system_power_efficient`] except that is freezable.
pub fn system_freezable_power_efficient() -> &'static Queue {
// SAFETY: `system_freezable_power_efficient_wq` is a C global, always available.
unsafe { &*bindings::system_freezable_power_efficient_wq.cast() }
}