1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
// SPDX-License-Identifier: GPL-2.0

//! Tasks (threads and processes).
//!
//! C header: [`include/linux/sched.h`](../../../../include/linux/sched.h).

use crate::{
    bindings, c_str, error::from_kernel_err_ptr, types::PointerWrapper, ARef, AlwaysRefCounted,
    Result, ScopeGuard,
};
use alloc::boxed::Box;
use core::{cell::UnsafeCell, fmt, marker::PhantomData, ops::Deref, ptr};

/// Wraps the kernel's `struct task_struct`.
///
/// # Invariants
///
/// Instances of this type are always ref-counted, that is, a call to `get_task_struct` ensures
/// that the allocation remains valid at least until the matching call to `put_task_struct`.
///
/// # Examples
///
/// The following is an example of getting the PID of the current thread with zero additional cost
/// when compared to the C version:
///
/// ```
/// use kernel::task::Task;
///
/// let pid = Task::current().pid();
/// ```
///
/// Getting the PID of the current process, also zero additional cost:
///
/// ```
/// use kernel::task::Task;
///
/// let pid = Task::current().group_leader().pid();
/// ```
///
/// Getting the current task and storing it in some struct. The reference count is automatically
/// incremented when creating `State` and decremented when it is dropped:
///
/// ```
/// use kernel::{task::Task, ARef};
///
/// struct State {
///     creator: ARef<Task>,
///     index: u32,
/// }
///
/// impl State {
///     fn new() -> Self {
///         Self {
///             creator: Task::current().into(),
///             index: 0,
///         }
///     }
/// }
/// ```
#[repr(transparent)]
pub struct Task(pub(crate) UnsafeCell<bindings::task_struct>);

// SAFETY: It's OK to access `Task` through references from other threads because we're either
// accessing properties that don't change (e.g., `pid`, `group_leader`) or that are properly
// synchronised by C code (e.g., `signal_pending`).
unsafe impl Sync for Task {}

/// The type of process identifiers (PIDs).
type Pid = bindings::pid_t;

impl Task {
    /// Returns a task reference for the currently executing task/thread.
    pub fn current<'a>() -> TaskRef<'a> {
        // SAFETY: Just an FFI call.
        let ptr = unsafe { bindings::get_current() };

        TaskRef {
            // SAFETY: If the current thread is still running, the current task is valid. Given
            // that `TaskRef` is not `Send`, we know it cannot be transferred to another thread
            // (where it could potentially outlive the caller).
            task: unsafe { &*ptr.cast() },
            _not_send: PhantomData,
        }
    }

    /// Returns the group leader of the given task.
    pub fn group_leader(&self) -> &Task {
        // SAFETY: By the type invariant, we know that `self.0` is valid.
        let ptr = unsafe { core::ptr::addr_of!((*self.0.get()).group_leader).read() };

        // SAFETY: The lifetime of the returned task reference is tied to the lifetime of `self`,
        // and given that a task has a reference to its group leader, we know it must be valid for
        // the lifetime of the returned task reference.
        unsafe { &*ptr.cast() }
    }

    /// Returns the PID of the given task.
    pub fn pid(&self) -> Pid {
        // SAFETY: By the type invariant, we know that `self.0` is valid.
        unsafe { core::ptr::addr_of!((*self.0.get()).pid).read() }
    }

    /// Determines whether the given task has pending signals.
    pub fn signal_pending(&self) -> bool {
        // SAFETY: By the type invariant, we know that `self.0` is valid.
        unsafe { bindings::signal_pending(self.0.get()) != 0 }
    }

    /// Starts a new kernel thread and runs it.
    ///
    /// # Examples
    ///
    /// Launches 10 threads and waits for them to complete.
    ///
    /// ```
    /// use core::sync::atomic::{AtomicU32, Ordering};
    /// use kernel::sync::{CondVar, Mutex};
    /// use kernel::task::Task;
    ///
    /// kernel::init_static_sync! {
    ///     static COUNT: Mutex<u32> = 0;
    ///     static COUNT_IS_ZERO: CondVar;
    /// }
    ///
    /// fn threadfn() {
    ///     pr_info!("Running from thread {}\n", Task::current().pid());
    ///     let mut guard = COUNT.lock();
    ///     *guard -= 1;
    ///     if *guard == 0 {
    ///         COUNT_IS_ZERO.notify_all();
    ///     }
    /// }
    ///
    /// // Set count to 10 and spawn 10 threads.
    /// *COUNT.lock() = 10;
    /// for i in 0..10 {
    ///     Task::spawn(fmt!("test{i}"), threadfn).unwrap();
    /// }
    ///
    /// // Wait for count to drop to zero.
    /// let mut guard = COUNT.lock();
    /// while (*guard != 0) {
    ///     COUNT_IS_ZERO.wait(&mut guard);
    /// }
    /// ```
    pub fn spawn<T: FnOnce() + Send + 'static>(
        name: fmt::Arguments<'_>,
        func: T,
    ) -> Result<ARef<Task>> {
        unsafe extern "C" fn threadfn<T: FnOnce() + Send + 'static>(
            arg: *mut core::ffi::c_void,
        ) -> core::ffi::c_int {
            // SAFETY: The thread argument is always a `Box<T>` because it is only called via the
            // thread creation below.
            let bfunc = unsafe { Box::<T>::from_pointer(arg) };
            bfunc();
            0
        }

        let arg = Box::try_new(func)?.into_pointer();

        // SAFETY: `arg` was just created with a call to `into_pointer` above.
        let guard = ScopeGuard::new(|| unsafe {
            Box::<T>::from_pointer(arg);
        });

        // SAFETY: The function pointer is always valid (as long as the module remains loaded).
        // Ownership of `raw` is transferred to the new thread (if one is actually created), so it
        // remains valid. Lastly, the C format string is a constant that require formatting as the
        // one and only extra argument.
        let ktask = from_kernel_err_ptr(unsafe {
            bindings::kthread_create_on_node(
                Some(threadfn::<T>),
                arg as _,
                bindings::NUMA_NO_NODE,
                c_str!("%pA").as_char_ptr(),
                &name as *const _ as *const core::ffi::c_void,
            )
        })?;

        // SAFETY: Since the kthread creation succeeded and we haven't run it yet, we know the task
        // is valid.
        let task: ARef<_> = unsafe { &*(ktask as *const Task) }.into();

        // Wakes up the thread, otherwise it won't run.
        task.wake_up();

        guard.dismiss();
        Ok(task)
    }

    /// Wakes up the task.
    pub fn wake_up(&self) {
        // SAFETY: By the type invariant, we know that `self.0.get()` is non-null and valid.
        // And `wake_up_process` is safe to be called for any valid task, even if the task is
        // running.
        unsafe { bindings::wake_up_process(self.0.get()) };
    }
}

// SAFETY: The type invariants guarantee that `Task` is always ref-counted.
unsafe impl AlwaysRefCounted for Task {
    fn inc_ref(&self) {
        // SAFETY: The existence of a shared reference means that the refcount is nonzero.
        unsafe { bindings::get_task_struct(self.0.get()) };
    }

    unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
        // SAFETY: The safety requirements guarantee that the refcount is nonzero.
        unsafe { bindings::put_task_struct(obj.cast().as_ptr()) }
    }
}

/// A wrapper for a shared reference to [`Task`] that isn't [`Send`].
///
/// We make this explicitly not [`Send`] so that we can use it to represent the current thread
/// without having to increment/decrement the task's reference count.
///
/// # Invariants
///
/// The wrapped [`Task`] remains valid for the lifetime of the object.
pub struct TaskRef<'a> {
    task: &'a Task,
    _not_send: PhantomData<*mut ()>,
}

impl Deref for TaskRef<'_> {
    type Target = Task;

    fn deref(&self) -> &Self::Target {
        self.task
    }
}

impl From<TaskRef<'_>> for ARef<Task> {
    fn from(t: TaskRef<'_>) -> Self {
        t.deref().into()
    }
}