1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
// SPDX-License-Identifier: GPL-2.0
//! Red-black trees.
//!
//! C header: [`include/linux/rbtree.h`](../../../../include/linux/rbtree.h)
//!
//! Reference: <https://www.kernel.org/doc/html/latest/core-api/rbtree.html>
use crate::{bindings, Result};
use alloc::boxed::Box;
use core::{
cmp::{Ord, Ordering},
iter::{IntoIterator, Iterator},
marker::PhantomData,
mem::MaybeUninit,
ptr::{addr_of_mut, NonNull},
};
struct Node<K, V> {
links: bindings::rb_node,
key: K,
value: V,
}
/// A red-black tree with owned nodes.
///
/// It is backed by the kernel C red-black trees.
///
/// # Invariants
///
/// Non-null parent/children pointers stored in instances of the `rb_node` C struct are always
/// valid, and pointing to a field of our internal representation of a node.
///
/// # Examples
///
/// In the example below we do several operations on a tree. We note that insertions may fail if
/// the system is out of memory.
///
/// ```
/// use kernel::rbtree::RBTree;
///
/// # fn test() -> Result {
/// // Create a new tree.
/// let mut tree = RBTree::new();
///
/// // Insert three elements.
/// tree.try_insert(20, 200)?;
/// tree.try_insert(10, 100)?;
/// tree.try_insert(30, 300)?;
///
/// // Check the nodes we just inserted.
/// {
/// let mut iter = tree.iter();
/// assert_eq!(iter.next().unwrap(), (&10, &100));
/// assert_eq!(iter.next().unwrap(), (&20, &200));
/// assert_eq!(iter.next().unwrap(), (&30, &300));
/// assert!(iter.next().is_none());
/// }
///
/// // Print all elements.
/// for (key, value) in &tree {
/// pr_info!("{} = {}\n", key, value);
/// }
///
/// // Replace one of the elements.
/// tree.try_insert(10, 1000)?;
///
/// // Check that the tree reflects the replacement.
/// {
/// let mut iter = tree.iter();
/// assert_eq!(iter.next().unwrap(), (&10, &1000));
/// assert_eq!(iter.next().unwrap(), (&20, &200));
/// assert_eq!(iter.next().unwrap(), (&30, &300));
/// assert!(iter.next().is_none());
/// }
///
/// // Change the value of one of the elements.
/// *tree.get_mut(&30).unwrap() = 3000;
///
/// // Check that the tree reflects the update.
/// {
/// let mut iter = tree.iter();
/// assert_eq!(iter.next().unwrap(), (&10, &1000));
/// assert_eq!(iter.next().unwrap(), (&20, &200));
/// assert_eq!(iter.next().unwrap(), (&30, &3000));
/// assert!(iter.next().is_none());
/// }
///
/// // Remove an element.
/// tree.remove(&10);
///
/// // Check that the tree reflects the removal.
/// {
/// let mut iter = tree.iter();
/// assert_eq!(iter.next().unwrap(), (&20, &200));
/// assert_eq!(iter.next().unwrap(), (&30, &3000));
/// assert!(iter.next().is_none());
/// }
///
/// // Update all values.
/// for value in tree.values_mut() {
/// *value *= 10;
/// }
///
/// // Check that the tree reflects the changes to values.
/// {
/// let mut iter = tree.iter();
/// assert_eq!(iter.next().unwrap(), (&20, &2000));
/// assert_eq!(iter.next().unwrap(), (&30, &30000));
/// assert!(iter.next().is_none());
/// }
///
/// # Ok(())
/// # }
/// #
/// # assert_eq!(test(), Ok(()));
/// ```
///
/// In the example below, we first allocate a node, acquire a spinlock, then insert the node into
/// the tree. This is useful when the insertion context does not allow sleeping, for example, when
/// holding a spinlock.
///
/// ```
/// use kernel::{rbtree::RBTree, sync::SpinLock};
///
/// fn insert_test(tree: &SpinLock<RBTree<u32, u32>>) -> Result {
/// // Pre-allocate node. This may fail (as it allocates memory).
/// let node = RBTree::try_allocate_node(10, 100)?;
///
/// // Insert node while holding the lock. It is guaranteed to succeed with no allocation
/// // attempts.
/// let mut guard = tree.lock();
/// guard.insert(node);
/// Ok(())
/// }
/// ```
///
/// In the example below, we reuse an existing node allocation from an element we removed.
///
/// ```
/// use kernel::rbtree::RBTree;
///
/// # fn test() -> Result {
/// // Create a new tree.
/// let mut tree = RBTree::new();
///
/// // Insert three elements.
/// tree.try_insert(20, 200)?;
/// tree.try_insert(10, 100)?;
/// tree.try_insert(30, 300)?;
///
/// // Check the nodes we just inserted.
/// {
/// let mut iter = tree.iter();
/// assert_eq!(iter.next().unwrap(), (&10, &100));
/// assert_eq!(iter.next().unwrap(), (&20, &200));
/// assert_eq!(iter.next().unwrap(), (&30, &300));
/// assert!(iter.next().is_none());
/// }
///
/// // Remove a node, getting back ownership of it.
/// let existing = tree.remove_node(&30).unwrap();
///
/// // Check that the tree reflects the removal.
/// {
/// let mut iter = tree.iter();
/// assert_eq!(iter.next().unwrap(), (&10, &100));
/// assert_eq!(iter.next().unwrap(), (&20, &200));
/// assert!(iter.next().is_none());
/// }
///
/// // Turn the node into a reservation so that we can reuse it with a different key/value.
/// let reservation = existing.into_reservation();
///
/// // Insert a new node into the tree, reusing the previous allocation. This is guaranteed to
/// // succeed (no memory allocations).
/// tree.insert(reservation.into_node(15, 150));
///
/// // Check that the tree reflect the new insertion.
/// {
/// let mut iter = tree.iter();
/// assert_eq!(iter.next().unwrap(), (&10, &100));
/// assert_eq!(iter.next().unwrap(), (&15, &150));
/// assert_eq!(iter.next().unwrap(), (&20, &200));
/// assert!(iter.next().is_none());
/// }
///
/// # Ok(())
/// # }
/// #
/// # assert_eq!(test(), Ok(()));
/// ```
pub struct RBTree<K, V> {
root: bindings::rb_root,
_p: PhantomData<Node<K, V>>,
}
impl<K, V> RBTree<K, V> {
/// Creates a new and empty tree.
pub fn new() -> Self {
Self {
// INVARIANT: There are no nodes in the tree, so the invariant holds vacuously.
root: bindings::rb_root::default(),
_p: PhantomData,
}
}
/// Tries to insert a new value into the tree.
///
/// It overwrites a node if one already exists with the same key and returns it (containing the
/// key/value pair). Returns [`None`] if a node with the same key didn't already exist.
///
/// Returns an error if it cannot allocate memory for the new node.
pub fn try_insert(&mut self, key: K, value: V) -> Result<Option<RBTreeNode<K, V>>>
where
K: Ord,
{
Ok(self.insert(Self::try_allocate_node(key, value)?))
}
/// Allocates memory for a node to be eventually initialised and inserted into the tree via a
/// call to [`RBTree::insert`].
pub fn try_reserve_node() -> Result<RBTreeNodeReservation<K, V>> {
Ok(RBTreeNodeReservation {
node: Box::try_new(MaybeUninit::uninit())?,
})
}
/// Allocates and initialiases a node that can be inserted into the tree via
/// [`RBTree::insert`].
pub fn try_allocate_node(key: K, value: V) -> Result<RBTreeNode<K, V>> {
Ok(Self::try_reserve_node()?.into_node(key, value))
}
/// Inserts a new node into the tree.
///
/// It overwrites a node if one already exists with the same key and returns it (containing the
/// key/value pair). Returns [`None`] if a node with the same key didn't already exist.
///
/// This function always succeeds.
pub fn insert(&mut self, node: RBTreeNode<K, V>) -> Option<RBTreeNode<K, V>>
where
K: Ord,
{
let RBTreeNode { node } = node;
let node = Box::into_raw(node);
// SAFETY: `node` is valid at least until we call `Box::from_raw`, which only happens when
// the node is removed or replaced.
let node_links = unsafe { addr_of_mut!((*node).links) };
let mut new_link: &mut *mut bindings::rb_node = &mut self.root.rb_node;
let mut parent = core::ptr::null_mut();
while !new_link.is_null() {
let this = crate::container_of!(*new_link, Node<K, V>, links);
parent = *new_link;
// SAFETY: `this` is a non-null node so it is valid by the type invariants. `node` is
// valid until the node is removed.
match unsafe { (*node).key.cmp(&(*this).key) } {
// SAFETY: `parent` is a non-null node so it is valid by the type invariants.
Ordering::Less => new_link = unsafe { &mut (*parent).rb_left },
// SAFETY: `parent` is a non-null node so it is valid by the type invariants.
Ordering::Greater => new_link = unsafe { &mut (*parent).rb_right },
Ordering::Equal => {
// INVARIANT: We are replacing an existing node with a new one, which is valid.
// It remains valid because we "forgot" it with `Box::into_raw`.
// SAFETY: All pointers are non-null and valid (parent, despite the name, really
// is the node we're replacing).
unsafe { bindings::rb_replace_node(parent, node_links, &mut self.root) };
// INVARIANT: The node is being returned and the caller may free it, however,
// it was removed from the tree. So the invariants still hold.
return Some(RBTreeNode {
// SAFETY: `this` was a node in the tree, so it is valid.
node: unsafe { Box::from_raw(this as _) },
});
}
}
}
// INVARIANT: We are linking in a new node, which is valid. It remains valid because we
// "forgot" it with `Box::into_raw`.
// SAFETY: All pointers are non-null and valid (`*new_link` is null, but `new_link` is a
// mutable reference).
unsafe { bindings::rb_link_node(node_links, parent, new_link) };
// SAFETY: All pointers are valid. `node` has just been inserted into the tree.
unsafe { bindings::rb_insert_color(node_links, &mut self.root) };
None
}
/// Returns a node with the given key, if one exists.
fn find(&self, key: &K) -> Option<NonNull<Node<K, V>>>
where
K: Ord,
{
let mut node = self.root.rb_node;
while !node.is_null() {
let this = crate::container_of!(node, Node<K, V>, links);
// SAFETY: `this` is a non-null node so it is valid by the type invariants.
node = match key.cmp(unsafe { &(*this).key }) {
// SAFETY: `node` is a non-null node so it is valid by the type invariants.
Ordering::Less => unsafe { (*node).rb_left },
// SAFETY: `node` is a non-null node so it is valid by the type invariants.
Ordering::Greater => unsafe { (*node).rb_right },
Ordering::Equal => return NonNull::new(this as _),
}
}
None
}
/// Returns a reference to the value corresponding to the key.
pub fn get(&self, key: &K) -> Option<&V>
where
K: Ord,
{
// SAFETY: The `find` return value is a node in the tree, so it is valid.
self.find(key).map(|node| unsafe { &node.as_ref().value })
}
/// Returns a mutable reference to the value corresponding to the key.
pub fn get_mut(&mut self, key: &K) -> Option<&mut V>
where
K: Ord,
{
// SAFETY: The `find` return value is a node in the tree, so it is valid.
self.find(key)
.map(|mut node| unsafe { &mut node.as_mut().value })
}
/// Removes the node with the given key from the tree.
///
/// It returns the node that was removed if one exists, or [`None`] otherwise.
pub fn remove_node(&mut self, key: &K) -> Option<RBTreeNode<K, V>>
where
K: Ord,
{
let mut node = self.find(key)?;
// SAFETY: The `find` return value is a node in the tree, so it is valid.
unsafe { bindings::rb_erase(&mut node.as_mut().links, &mut self.root) };
// INVARIANT: The node is being returned and the caller may free it, however, it was
// removed from the tree. So the invariants still hold.
Some(RBTreeNode {
// SAFETY: The `find` return value was a node in the tree, so it is valid.
node: unsafe { Box::from_raw(node.as_ptr()) },
})
}
/// Removes the node with the given key from the tree.
///
/// It returns the value that was removed if one exists, or [`None`] otherwise.
pub fn remove(&mut self, key: &K) -> Option<V>
where
K: Ord,
{
let node = self.remove_node(key)?;
let RBTreeNode { node } = node;
let Node {
links: _,
key: _,
value,
} = *node;
Some(value)
}
/// Returns an iterator over the tree nodes, sorted by key.
pub fn iter(&self) -> RBTreeIterator<'_, K, V> {
RBTreeIterator {
_tree: PhantomData,
// SAFETY: `root` is valid as it's embedded in `self` and we have a valid `self`.
next: unsafe { bindings::rb_first(&self.root) },
}
}
/// Returns a mutable iterator over the tree nodes, sorted by key.
pub fn iter_mut(&mut self) -> RBTreeIteratorMut<'_, K, V> {
RBTreeIteratorMut {
_tree: PhantomData,
// SAFETY: `root` is valid as it's embedded in `self` and we have a valid `self`.
next: unsafe { bindings::rb_first(&self.root) },
}
}
/// Returns an iterator over the keys of the nodes in the tree, in sorted order.
pub fn keys(&self) -> impl Iterator<Item = &'_ K> {
self.iter().map(|(k, _)| k)
}
/// Returns an iterator over the values of the nodes in the tree, sorted by key.
pub fn values(&self) -> impl Iterator<Item = &'_ V> {
self.iter().map(|(_, v)| v)
}
/// Returns a mutable iterator over the values of the nodes in the tree, sorted by key.
pub fn values_mut(&mut self) -> impl Iterator<Item = &'_ mut V> {
self.iter_mut().map(|(_, v)| v)
}
}
impl<K, V> Default for RBTree<K, V> {
fn default() -> Self {
Self::new()
}
}
impl<K, V> Drop for RBTree<K, V> {
fn drop(&mut self) {
// SAFETY: `root` is valid as it's embedded in `self` and we have a valid `self`.
let mut next = unsafe { bindings::rb_first_postorder(&self.root) };
// INVARIANT: The loop invariant is that all tree nodes from `next` in postorder are valid.
while !next.is_null() {
let this = crate::container_of!(next, Node<K, V>, links);
// Find out what the next node is before disposing of the current one.
// SAFETY: `next` and all nodes in postorder are still valid.
next = unsafe { bindings::rb_next_postorder(next) };
// INVARIANT: This is the destructor, so we break the type invariant during clean-up,
// but it is not observable. The loop invariant is still maintained.
// SAFETY: `this` is valid per the loop invariant.
unsafe { Box::from_raw(this as *mut Node<K, V>) };
}
}
}
impl<'a, K, V> IntoIterator for &'a RBTree<K, V> {
type Item = (&'a K, &'a V);
type IntoIter = RBTreeIterator<'a, K, V>;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
/// An iterator over the nodes of a [`RBTree`].
///
/// Instances are created by calling [`RBTree::iter`].
pub struct RBTreeIterator<'a, K, V> {
_tree: PhantomData<&'a RBTree<K, V>>,
next: *mut bindings::rb_node,
}
impl<'a, K, V> Iterator for RBTreeIterator<'a, K, V> {
type Item = (&'a K, &'a V);
fn next(&mut self) -> Option<Self::Item> {
if self.next.is_null() {
return None;
}
let cur = crate::container_of!(self.next, Node<K, V>, links);
// SAFETY: The reference to the tree used to create the iterator outlives the iterator, so
// the tree cannot change. By the tree invariant, all nodes are valid.
self.next = unsafe { bindings::rb_next(self.next) };
// SAFETY: By the same reasoning above, it is safe to dereference the node. Additionally,
// it is ok to return a reference to members because the iterator must outlive it.
Some(unsafe { (&(*cur).key, &(*cur).value) })
}
}
impl<'a, K, V> IntoIterator for &'a mut RBTree<K, V> {
type Item = (&'a K, &'a mut V);
type IntoIter = RBTreeIteratorMut<'a, K, V>;
fn into_iter(self) -> Self::IntoIter {
self.iter_mut()
}
}
/// A mutable iterator over the nodes of a [`RBTree`].
///
/// Instances are created by calling [`RBTree::iter_mut`].
pub struct RBTreeIteratorMut<'a, K, V> {
_tree: PhantomData<&'a RBTree<K, V>>,
next: *mut bindings::rb_node,
}
impl<'a, K, V> Iterator for RBTreeIteratorMut<'a, K, V> {
type Item = (&'a K, &'a mut V);
fn next(&mut self) -> Option<Self::Item> {
if self.next.is_null() {
return None;
}
let cur = crate::container_of!(self.next, Node<K, V>, links) as *mut Node<K, V>;
// SAFETY: The reference to the tree used to create the iterator outlives the iterator, so
// the tree cannot change (except for the value of previous nodes, but those don't affect
// the iteration process). By the tree invariant, all nodes are valid.
self.next = unsafe { bindings::rb_next(self.next) };
// SAFETY: By the same reasoning above, it is safe to dereference the node. Additionally,
// it is ok to return a reference to members because the iterator must outlive it.
Some(unsafe { (&(*cur).key, &mut (*cur).value) })
}
}
/// A memory reservation for a red-black tree node.
///
/// It contains the memory needed to hold a node that can be inserted into a red-black tree. One
/// can be obtained by directly allocating it ([`RBTree::try_reserve_node`]) or by "uninitialising"
/// ([`RBTreeNode::into_reservation`]) an actual node (usually returned by some operation like
/// removal from a tree).
pub struct RBTreeNodeReservation<K, V> {
node: Box<MaybeUninit<Node<K, V>>>,
}
impl<K, V> RBTreeNodeReservation<K, V> {
/// Initialises a node reservation.
///
/// It then becomes an [`RBTreeNode`] that can be inserted into a tree.
pub fn into_node(mut self, key: K, value: V) -> RBTreeNode<K, V> {
let node_ptr = self.node.as_mut_ptr();
// SAFETY: `node_ptr` is valid, and so are its fields.
unsafe { addr_of_mut!((*node_ptr).links).write(bindings::rb_node::default()) };
// SAFETY: `node_ptr` is valid, and so are its fields.
unsafe { addr_of_mut!((*node_ptr).key).write(key) };
// SAFETY: `node_ptr` is valid, and so are its fields.
unsafe { addr_of_mut!((*node_ptr).value).write(value) };
let raw = Box::into_raw(self.node);
RBTreeNode {
// SAFETY: The pointer came from a `MaybeUninit<Node>` whose fields have all been
// initialised. Additionally, it has the same layout as `Node`.
node: unsafe { Box::from_raw(raw as _) },
}
}
}
/// A red-black tree node.
///
/// The node is fully initialised (with key and value) and can be inserted into a tree without any
/// extra allocations or failure paths.
pub struct RBTreeNode<K, V> {
node: Box<Node<K, V>>,
}
impl<K, V> RBTreeNode<K, V> {
/// "Uninitialises" a node.
///
/// It then becomes a reservation that can be re-initialised into a different node (i.e., with
/// a different key and/or value).
///
/// The existing key and value are dropped in-place as part of this operation, that is, memory
/// may be freed (but only for the key/value; memory for the node itself is kept for reuse).
pub fn into_reservation(self) -> RBTreeNodeReservation<K, V> {
let raw = Box::into_raw(self.node);
let mut ret = RBTreeNodeReservation {
// SAFETY: The pointer came from a valid `Node`, which has the same layout as
// `MaybeUninit<Node>`.
node: unsafe { Box::from_raw(raw as _) },
};
// SAFETY: Although the type is `MaybeUninit<Node>`, we know it has been initialised
// because it came from a `Node`. So it is safe to drop it.
unsafe { core::ptr::drop_in_place(ret.node.as_mut_ptr()) };
ret
}
}