1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
// SPDX-License-Identifier: GPL-2.0

//! Red-black trees.
//!
//! C header: [`include/linux/rbtree.h`](../../../../include/linux/rbtree.h)
//!
//! Reference: <https://www.kernel.org/doc/html/latest/core-api/rbtree.html>

use crate::{bindings, Result};
use alloc::boxed::Box;
use core::{
    cmp::{Ord, Ordering},
    iter::{IntoIterator, Iterator},
    marker::PhantomData,
    mem::MaybeUninit,
    ptr::{addr_of_mut, NonNull},
};

struct Node<K, V> {
    links: bindings::rb_node,
    key: K,
    value: V,
}

/// A red-black tree with owned nodes.
///
/// It is backed by the kernel C red-black trees.
///
/// # Invariants
///
/// Non-null parent/children pointers stored in instances of the `rb_node` C struct are always
/// valid, and pointing to a field of our internal representation of a node.
///
/// # Examples
///
/// In the example below we do several operations on a tree. We note that insertions may fail if
/// the system is out of memory.
///
/// ```
/// use kernel::rbtree::RBTree;
///
/// # fn test() -> Result {
/// // Create a new tree.
/// let mut tree = RBTree::new();
///
/// // Insert three elements.
/// tree.try_insert(20, 200)?;
/// tree.try_insert(10, 100)?;
/// tree.try_insert(30, 300)?;
///
/// // Check the nodes we just inserted.
/// {
///     let mut iter = tree.iter();
///     assert_eq!(iter.next().unwrap(), (&10, &100));
///     assert_eq!(iter.next().unwrap(), (&20, &200));
///     assert_eq!(iter.next().unwrap(), (&30, &300));
///     assert!(iter.next().is_none());
/// }
///
/// // Print all elements.
/// for (key, value) in &tree {
///     pr_info!("{} = {}\n", key, value);
/// }
///
/// // Replace one of the elements.
/// tree.try_insert(10, 1000)?;
///
/// // Check that the tree reflects the replacement.
/// {
///     let mut iter = tree.iter();
///     assert_eq!(iter.next().unwrap(), (&10, &1000));
///     assert_eq!(iter.next().unwrap(), (&20, &200));
///     assert_eq!(iter.next().unwrap(), (&30, &300));
///     assert!(iter.next().is_none());
/// }
///
/// // Change the value of one of the elements.
/// *tree.get_mut(&30).unwrap() = 3000;
///
/// // Check that the tree reflects the update.
/// {
///     let mut iter = tree.iter();
///     assert_eq!(iter.next().unwrap(), (&10, &1000));
///     assert_eq!(iter.next().unwrap(), (&20, &200));
///     assert_eq!(iter.next().unwrap(), (&30, &3000));
///     assert!(iter.next().is_none());
/// }
///
/// // Remove an element.
/// tree.remove(&10);
///
/// // Check that the tree reflects the removal.
/// {
///     let mut iter = tree.iter();
///     assert_eq!(iter.next().unwrap(), (&20, &200));
///     assert_eq!(iter.next().unwrap(), (&30, &3000));
///     assert!(iter.next().is_none());
/// }
///
/// // Update all values.
/// for value in tree.values_mut() {
///     *value *= 10;
/// }
///
/// // Check that the tree reflects the changes to values.
/// {
///     let mut iter = tree.iter();
///     assert_eq!(iter.next().unwrap(), (&20, &2000));
///     assert_eq!(iter.next().unwrap(), (&30, &30000));
///     assert!(iter.next().is_none());
/// }
///
/// # Ok(())
/// # }
/// #
/// # assert_eq!(test(), Ok(()));
/// ```
///
/// In the example below, we first allocate a node, acquire a spinlock, then insert the node into
/// the tree. This is useful when the insertion context does not allow sleeping, for example, when
/// holding a spinlock.
///
/// ```
/// use kernel::{rbtree::RBTree, sync::SpinLock};
///
/// fn insert_test(tree: &SpinLock<RBTree<u32, u32>>) -> Result {
///     // Pre-allocate node. This may fail (as it allocates memory).
///     let node = RBTree::try_allocate_node(10, 100)?;
///
///     // Insert node while holding the lock. It is guaranteed to succeed with no allocation
///     // attempts.
///     let mut guard = tree.lock();
///     guard.insert(node);
///     Ok(())
/// }
/// ```
///
/// In the example below, we reuse an existing node allocation from an element we removed.
///
/// ```
/// use kernel::rbtree::RBTree;
///
/// # fn test() -> Result {
/// // Create a new tree.
/// let mut tree = RBTree::new();
///
/// // Insert three elements.
/// tree.try_insert(20, 200)?;
/// tree.try_insert(10, 100)?;
/// tree.try_insert(30, 300)?;
///
/// // Check the nodes we just inserted.
/// {
///     let mut iter = tree.iter();
///     assert_eq!(iter.next().unwrap(), (&10, &100));
///     assert_eq!(iter.next().unwrap(), (&20, &200));
///     assert_eq!(iter.next().unwrap(), (&30, &300));
///     assert!(iter.next().is_none());
/// }
///
/// // Remove a node, getting back ownership of it.
/// let existing = tree.remove_node(&30).unwrap();
///
/// // Check that the tree reflects the removal.
/// {
///     let mut iter = tree.iter();
///     assert_eq!(iter.next().unwrap(), (&10, &100));
///     assert_eq!(iter.next().unwrap(), (&20, &200));
///     assert!(iter.next().is_none());
/// }
///
/// // Turn the node into a reservation so that we can reuse it with a different key/value.
/// let reservation = existing.into_reservation();
///
/// // Insert a new node into the tree, reusing the previous allocation. This is guaranteed to
/// // succeed (no memory allocations).
/// tree.insert(reservation.into_node(15, 150));
///
/// // Check that the tree reflect the new insertion.
/// {
///     let mut iter = tree.iter();
///     assert_eq!(iter.next().unwrap(), (&10, &100));
///     assert_eq!(iter.next().unwrap(), (&15, &150));
///     assert_eq!(iter.next().unwrap(), (&20, &200));
///     assert!(iter.next().is_none());
/// }
///
/// # Ok(())
/// # }
/// #
/// # assert_eq!(test(), Ok(()));
/// ```
pub struct RBTree<K, V> {
    root: bindings::rb_root,
    _p: PhantomData<Node<K, V>>,
}

impl<K, V> RBTree<K, V> {
    /// Creates a new and empty tree.
    pub fn new() -> Self {
        Self {
            // INVARIANT: There are no nodes in the tree, so the invariant holds vacuously.
            root: bindings::rb_root::default(),
            _p: PhantomData,
        }
    }

    /// Tries to insert a new value into the tree.
    ///
    /// It overwrites a node if one already exists with the same key and returns it (containing the
    /// key/value pair). Returns [`None`] if a node with the same key didn't already exist.
    ///
    /// Returns an error if it cannot allocate memory for the new node.
    pub fn try_insert(&mut self, key: K, value: V) -> Result<Option<RBTreeNode<K, V>>>
    where
        K: Ord,
    {
        Ok(self.insert(Self::try_allocate_node(key, value)?))
    }

    /// Allocates memory for a node to be eventually initialised and inserted into the tree via a
    /// call to [`RBTree::insert`].
    pub fn try_reserve_node() -> Result<RBTreeNodeReservation<K, V>> {
        Ok(RBTreeNodeReservation {
            node: Box::try_new(MaybeUninit::uninit())?,
        })
    }

    /// Allocates and initialiases a node that can be inserted into the tree via
    /// [`RBTree::insert`].
    pub fn try_allocate_node(key: K, value: V) -> Result<RBTreeNode<K, V>> {
        Ok(Self::try_reserve_node()?.into_node(key, value))
    }

    /// Inserts a new node into the tree.
    ///
    /// It overwrites a node if one already exists with the same key and returns it (containing the
    /// key/value pair). Returns [`None`] if a node with the same key didn't already exist.
    ///
    /// This function always succeeds.
    pub fn insert(&mut self, node: RBTreeNode<K, V>) -> Option<RBTreeNode<K, V>>
    where
        K: Ord,
    {
        let RBTreeNode { node } = node;
        let node = Box::into_raw(node);
        // SAFETY: `node` is valid at least until we call `Box::from_raw`, which only happens when
        // the node is removed or replaced.
        let node_links = unsafe { addr_of_mut!((*node).links) };
        let mut new_link: &mut *mut bindings::rb_node = &mut self.root.rb_node;
        let mut parent = core::ptr::null_mut();
        while !new_link.is_null() {
            let this = crate::container_of!(*new_link, Node<K, V>, links);

            parent = *new_link;

            // SAFETY: `this` is a non-null node so it is valid by the type invariants. `node` is
            // valid until the node is removed.
            match unsafe { (*node).key.cmp(&(*this).key) } {
                // SAFETY: `parent` is a non-null node so it is valid by the type invariants.
                Ordering::Less => new_link = unsafe { &mut (*parent).rb_left },
                // SAFETY: `parent` is a non-null node so it is valid by the type invariants.
                Ordering::Greater => new_link = unsafe { &mut (*parent).rb_right },
                Ordering::Equal => {
                    // INVARIANT: We are replacing an existing node with a new one, which is valid.
                    // It remains valid because we "forgot" it with `Box::into_raw`.
                    // SAFETY: All pointers are non-null and valid (parent, despite the name, really
                    // is the node we're replacing).
                    unsafe { bindings::rb_replace_node(parent, node_links, &mut self.root) };

                    // INVARIANT: The node is being returned and the caller may free it, however,
                    // it was removed from the tree. So the invariants still hold.
                    return Some(RBTreeNode {
                        // SAFETY: `this` was a node in the tree, so it is valid.
                        node: unsafe { Box::from_raw(this as _) },
                    });
                }
            }
        }

        // INVARIANT: We are linking in a new node, which is valid. It remains valid because we
        // "forgot" it with `Box::into_raw`.
        // SAFETY: All pointers are non-null and valid (`*new_link` is null, but `new_link` is a
        // mutable reference).
        unsafe { bindings::rb_link_node(node_links, parent, new_link) };

        // SAFETY: All pointers are valid. `node` has just been inserted into the tree.
        unsafe { bindings::rb_insert_color(node_links, &mut self.root) };
        None
    }

    /// Returns a node with the given key, if one exists.
    fn find(&self, key: &K) -> Option<NonNull<Node<K, V>>>
    where
        K: Ord,
    {
        let mut node = self.root.rb_node;
        while !node.is_null() {
            let this = crate::container_of!(node, Node<K, V>, links);
            // SAFETY: `this` is a non-null node so it is valid by the type invariants.
            node = match key.cmp(unsafe { &(*this).key }) {
                // SAFETY: `node` is a non-null node so it is valid by the type invariants.
                Ordering::Less => unsafe { (*node).rb_left },
                // SAFETY: `node` is a non-null node so it is valid by the type invariants.
                Ordering::Greater => unsafe { (*node).rb_right },
                Ordering::Equal => return NonNull::new(this as _),
            }
        }
        None
    }

    /// Returns a reference to the value corresponding to the key.
    pub fn get(&self, key: &K) -> Option<&V>
    where
        K: Ord,
    {
        // SAFETY: The `find` return value is a node in the tree, so it is valid.
        self.find(key).map(|node| unsafe { &node.as_ref().value })
    }

    /// Returns a mutable reference to the value corresponding to the key.
    pub fn get_mut(&mut self, key: &K) -> Option<&mut V>
    where
        K: Ord,
    {
        // SAFETY: The `find` return value is a node in the tree, so it is valid.
        self.find(key)
            .map(|mut node| unsafe { &mut node.as_mut().value })
    }

    /// Removes the node with the given key from the tree.
    ///
    /// It returns the node that was removed if one exists, or [`None`] otherwise.
    pub fn remove_node(&mut self, key: &K) -> Option<RBTreeNode<K, V>>
    where
        K: Ord,
    {
        let mut node = self.find(key)?;

        // SAFETY: The `find` return value is a node in the tree, so it is valid.
        unsafe { bindings::rb_erase(&mut node.as_mut().links, &mut self.root) };

        // INVARIANT: The node is being returned and the caller may free it, however, it was
        // removed from the tree. So the invariants still hold.
        Some(RBTreeNode {
            // SAFETY: The `find` return value was a node in the tree, so it is valid.
            node: unsafe { Box::from_raw(node.as_ptr()) },
        })
    }

    /// Removes the node with the given key from the tree.
    ///
    /// It returns the value that was removed if one exists, or [`None`] otherwise.
    pub fn remove(&mut self, key: &K) -> Option<V>
    where
        K: Ord,
    {
        let node = self.remove_node(key)?;
        let RBTreeNode { node } = node;
        let Node {
            links: _,
            key: _,
            value,
        } = *node;
        Some(value)
    }

    /// Returns an iterator over the tree nodes, sorted by key.
    pub fn iter(&self) -> RBTreeIterator<'_, K, V> {
        RBTreeIterator {
            _tree: PhantomData,
            // SAFETY: `root` is valid as it's embedded in `self` and we have a valid `self`.
            next: unsafe { bindings::rb_first(&self.root) },
        }
    }

    /// Returns a mutable iterator over the tree nodes, sorted by key.
    pub fn iter_mut(&mut self) -> RBTreeIteratorMut<'_, K, V> {
        RBTreeIteratorMut {
            _tree: PhantomData,
            // SAFETY: `root` is valid as it's embedded in `self` and we have a valid `self`.
            next: unsafe { bindings::rb_first(&self.root) },
        }
    }

    /// Returns an iterator over the keys of the nodes in the tree, in sorted order.
    pub fn keys(&self) -> impl Iterator<Item = &'_ K> {
        self.iter().map(|(k, _)| k)
    }

    /// Returns an iterator over the values of the nodes in the tree, sorted by key.
    pub fn values(&self) -> impl Iterator<Item = &'_ V> {
        self.iter().map(|(_, v)| v)
    }

    /// Returns a mutable iterator over the values of the nodes in the tree, sorted by key.
    pub fn values_mut(&mut self) -> impl Iterator<Item = &'_ mut V> {
        self.iter_mut().map(|(_, v)| v)
    }
}

impl<K, V> Default for RBTree<K, V> {
    fn default() -> Self {
        Self::new()
    }
}

impl<K, V> Drop for RBTree<K, V> {
    fn drop(&mut self) {
        // SAFETY: `root` is valid as it's embedded in `self` and we have a valid `self`.
        let mut next = unsafe { bindings::rb_first_postorder(&self.root) };

        // INVARIANT: The loop invariant is that all tree nodes from `next` in postorder are valid.
        while !next.is_null() {
            let this = crate::container_of!(next, Node<K, V>, links);

            // Find out what the next node is before disposing of the current one.
            // SAFETY: `next` and all nodes in postorder are still valid.
            next = unsafe { bindings::rb_next_postorder(next) };

            // INVARIANT: This is the destructor, so we break the type invariant during clean-up,
            // but it is not observable. The loop invariant is still maintained.
            // SAFETY: `this` is valid per the loop invariant.
            unsafe { Box::from_raw(this as *mut Node<K, V>) };
        }
    }
}

impl<'a, K, V> IntoIterator for &'a RBTree<K, V> {
    type Item = (&'a K, &'a V);
    type IntoIter = RBTreeIterator<'a, K, V>;

    fn into_iter(self) -> Self::IntoIter {
        self.iter()
    }
}

/// An iterator over the nodes of a [`RBTree`].
///
/// Instances are created by calling [`RBTree::iter`].
pub struct RBTreeIterator<'a, K, V> {
    _tree: PhantomData<&'a RBTree<K, V>>,
    next: *mut bindings::rb_node,
}

impl<'a, K, V> Iterator for RBTreeIterator<'a, K, V> {
    type Item = (&'a K, &'a V);

    fn next(&mut self) -> Option<Self::Item> {
        if self.next.is_null() {
            return None;
        }

        let cur = crate::container_of!(self.next, Node<K, V>, links);

        // SAFETY: The reference to the tree used to create the iterator outlives the iterator, so
        // the tree cannot change. By the tree invariant, all nodes are valid.
        self.next = unsafe { bindings::rb_next(self.next) };

        // SAFETY: By the same reasoning above, it is safe to dereference the node. Additionally,
        // it is ok to return a reference to members because the iterator must outlive it.
        Some(unsafe { (&(*cur).key, &(*cur).value) })
    }
}

impl<'a, K, V> IntoIterator for &'a mut RBTree<K, V> {
    type Item = (&'a K, &'a mut V);
    type IntoIter = RBTreeIteratorMut<'a, K, V>;

    fn into_iter(self) -> Self::IntoIter {
        self.iter_mut()
    }
}

/// A mutable iterator over the nodes of a [`RBTree`].
///
/// Instances are created by calling [`RBTree::iter_mut`].
pub struct RBTreeIteratorMut<'a, K, V> {
    _tree: PhantomData<&'a RBTree<K, V>>,
    next: *mut bindings::rb_node,
}

impl<'a, K, V> Iterator for RBTreeIteratorMut<'a, K, V> {
    type Item = (&'a K, &'a mut V);

    fn next(&mut self) -> Option<Self::Item> {
        if self.next.is_null() {
            return None;
        }

        let cur = crate::container_of!(self.next, Node<K, V>, links) as *mut Node<K, V>;

        // SAFETY: The reference to the tree used to create the iterator outlives the iterator, so
        // the tree cannot change (except for the value of previous nodes, but those don't affect
        // the iteration process). By the tree invariant, all nodes are valid.
        self.next = unsafe { bindings::rb_next(self.next) };

        // SAFETY: By the same reasoning above, it is safe to dereference the node. Additionally,
        // it is ok to return a reference to members because the iterator must outlive it.
        Some(unsafe { (&(*cur).key, &mut (*cur).value) })
    }
}

/// A memory reservation for a red-black tree node.
///
/// It contains the memory needed to hold a node that can be inserted into a red-black tree. One
/// can be obtained by directly allocating it ([`RBTree::try_reserve_node`]) or by "uninitialising"
/// ([`RBTreeNode::into_reservation`]) an actual node (usually returned by some operation like
/// removal from a tree).
pub struct RBTreeNodeReservation<K, V> {
    node: Box<MaybeUninit<Node<K, V>>>,
}

impl<K, V> RBTreeNodeReservation<K, V> {
    /// Initialises a node reservation.
    ///
    /// It then becomes an [`RBTreeNode`] that can be inserted into a tree.
    pub fn into_node(mut self, key: K, value: V) -> RBTreeNode<K, V> {
        let node_ptr = self.node.as_mut_ptr();
        // SAFETY: `node_ptr` is valid, and so are its fields.
        unsafe { addr_of_mut!((*node_ptr).links).write(bindings::rb_node::default()) };
        // SAFETY: `node_ptr` is valid, and so are its fields.
        unsafe { addr_of_mut!((*node_ptr).key).write(key) };
        // SAFETY: `node_ptr` is valid, and so are its fields.
        unsafe { addr_of_mut!((*node_ptr).value).write(value) };
        let raw = Box::into_raw(self.node);
        RBTreeNode {
            // SAFETY: The pointer came from a `MaybeUninit<Node>` whose fields have all been
            // initialised. Additionally, it has the same layout as `Node`.
            node: unsafe { Box::from_raw(raw as _) },
        }
    }
}

/// A red-black tree node.
///
/// The node is fully initialised (with key and value) and can be inserted into a tree without any
/// extra allocations or failure paths.
pub struct RBTreeNode<K, V> {
    node: Box<Node<K, V>>,
}

impl<K, V> RBTreeNode<K, V> {
    /// "Uninitialises" a node.
    ///
    /// It then becomes a reservation that can be re-initialised into a different node (i.e., with
    /// a different key and/or value).
    ///
    /// The existing key and value are dropped in-place as part of this operation, that is, memory
    /// may be freed (but only for the key/value; memory for the node itself is kept for reuse).
    pub fn into_reservation(self) -> RBTreeNodeReservation<K, V> {
        let raw = Box::into_raw(self.node);
        let mut ret = RBTreeNodeReservation {
            // SAFETY: The pointer came from a valid `Node`, which has the same layout as
            // `MaybeUninit<Node>`.
            node: unsafe { Box::from_raw(raw as _) },
        };
        // SAFETY: Although the type is `MaybeUninit<Node>`, we know it has been initialised
        // because it came from a `Node`. So it is safe to drop it.
        unsafe { core::ptr::drop_in_place(ret.node.as_mut_ptr()) };
        ret
    }
}