1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
// SPDX-License-Identifier: GPL-2.0
//! Memory-mapped IO.
//!
//! C header: [`include/asm-generic/io.h`](../../../../include/asm-generic/io.h)
#![allow(dead_code)]
use crate::{bindings, error::code::*, Result};
use core::convert::TryInto;
/// Represents a memory resource.
pub struct Resource {
offset: bindings::resource_size_t,
size: bindings::resource_size_t,
}
impl Resource {
pub(crate) fn new(
start: bindings::resource_size_t,
end: bindings::resource_size_t,
) -> Option<Self> {
if start == 0 {
return None;
}
Some(Self {
offset: start,
size: end.checked_sub(start)?.checked_add(1)?,
})
}
}
/// Represents a memory block of at least `SIZE` bytes.
///
/// # Invariants
///
/// `ptr` is a non-null and valid address of at least `SIZE` bytes and returned by an `ioremap`
/// variant. `ptr` is also 8-byte aligned.
///
/// # Examples
///
/// ```
/// # use kernel::prelude::*;
/// use kernel::io_mem::{IoMem, Resource};
///
/// fn test(res: Resource) -> Result {
/// // Create an io mem block of at least 100 bytes.
/// // SAFETY: No DMA operations are initiated through `mem`.
/// let mem = unsafe { IoMem::<100>::try_new(res) }?;
///
/// // Read one byte from offset 10.
/// let v = mem.readb(10);
///
/// // Write value to offset 20.
/// mem.writeb(v, 20);
///
/// Ok(())
/// }
/// ```
pub struct IoMem<const SIZE: usize> {
ptr: usize,
}
macro_rules! define_read {
($(#[$attr:meta])* $name:ident, $try_name:ident, $type_name:ty) => {
/// Reads IO data from the given offset known, at compile time.
///
/// If the offset is not known at compile time, the build will fail.
$(#[$attr])*
#[inline]
pub fn $name(&self, offset: usize) -> $type_name {
Self::check_offset::<$type_name>(offset);
let ptr = self.ptr.wrapping_add(offset);
// SAFETY: The type invariants guarantee that `ptr` is a valid pointer. The check above
// guarantees that the code won't build if `offset` makes the read go out of bounds
// (including the type size).
unsafe { bindings::$name(ptr as _) }
}
/// Reads IO data from the given offset.
///
/// It fails if/when the offset (plus the type size) is out of bounds.
$(#[$attr])*
pub fn $try_name(&self, offset: usize) -> Result<$type_name> {
if !Self::offset_ok::<$type_name>(offset) {
return Err(EINVAL);
}
let ptr = self.ptr.wrapping_add(offset);
// SAFETY: The type invariants guarantee that `ptr` is a valid pointer. The check above
// returns an error if `offset` would make the read go out of bounds (including the
// type size).
Ok(unsafe { bindings::$name(ptr as _) })
}
};
}
macro_rules! define_write {
($(#[$attr:meta])* $name:ident, $try_name:ident, $type_name:ty) => {
/// Writes IO data to the given offset, known at compile time.
///
/// If the offset is not known at compile time, the build will fail.
$(#[$attr])*
#[inline]
pub fn $name(&self, value: $type_name, offset: usize) {
Self::check_offset::<$type_name>(offset);
let ptr = self.ptr.wrapping_add(offset);
// SAFETY: The type invariants guarantee that `ptr` is a valid pointer. The check above
// guarantees that the code won't link if `offset` makes the write go out of bounds
// (including the type size).
unsafe { bindings::$name(value, ptr as _) }
}
/// Writes IO data to the given offset.
///
/// It fails if/when the offset (plus the type size) is out of bounds.
$(#[$attr])*
pub fn $try_name(&self, value: $type_name, offset: usize) -> Result {
if !Self::offset_ok::<$type_name>(offset) {
return Err(EINVAL);
}
let ptr = self.ptr.wrapping_add(offset);
// SAFETY: The type invariants guarantee that `ptr` is a valid pointer. The check above
// returns an error if `offset` would make the write go out of bounds (including the
// type size).
unsafe { bindings::$name(value, ptr as _) };
Ok(())
}
};
}
impl<const SIZE: usize> IoMem<SIZE> {
/// Tries to create a new instance of a memory block.
///
/// The resource described by `res` is mapped into the CPU's address space so that it can be
/// accessed directly. It is also consumed by this function so that it can't be mapped again
/// to a different address.
///
/// # Safety
///
/// Callers must ensure that either (a) the resulting interface cannot be used to initiate DMA
/// operations, or (b) that DMA operations initiated via the returned interface use DMA handles
/// allocated through the `dma` module.
pub unsafe fn try_new(res: Resource) -> Result<Self> {
// Check that the resource has at least `SIZE` bytes in it.
if res.size < SIZE.try_into()? {
return Err(EINVAL);
}
// To be able to check pointers at compile time based only on offsets, we need to guarantee
// that the base pointer is minimally aligned. So we conservatively expect at least 8 bytes.
if res.offset % 8 != 0 {
crate::pr_err!("Physical address is not 64-bit aligned: {:x}", res.offset);
return Err(EDOM);
}
// Try to map the resource.
// SAFETY: Just mapping the memory range.
let addr = unsafe { bindings::ioremap(res.offset, res.size as _) };
if addr.is_null() {
Err(ENOMEM)
} else {
// INVARIANT: `addr` is non-null and was returned by `ioremap`, so it is valid. It is
// also 8-byte aligned because we checked it above.
Ok(Self { ptr: addr as usize })
}
}
#[inline]
const fn offset_ok<T>(offset: usize) -> bool {
let type_size = core::mem::size_of::<T>();
if let Some(end) = offset.checked_add(type_size) {
end <= SIZE && offset % type_size == 0
} else {
false
}
}
fn offset_ok_of_val<T: ?Sized>(offset: usize, value: &T) -> bool {
let value_size = core::mem::size_of_val(value);
let value_alignment = core::mem::align_of_val(value);
if let Some(end) = offset.checked_add(value_size) {
end <= SIZE && offset % value_alignment == 0
} else {
false
}
}
#[inline]
const fn check_offset<T>(offset: usize) {
crate::build_assert!(Self::offset_ok::<T>(offset), "IoMem offset overflow");
}
/// Copy memory block from an i/o memory by filling the specified buffer with it.
///
/// # Examples
/// ```
/// use kernel::io_mem::{self, IoMem, Resource};
///
/// fn test(res: Resource) -> Result {
/// // Create an i/o memory block of at least 100 bytes.
/// let mem = unsafe { IoMem::<100>::try_new(res) }?;
///
/// let mut buffer: [u8; 32] = [0; 32];
///
/// // Memcpy 16 bytes from an offset 10 of i/o memory block into the buffer.
/// mem.try_memcpy_fromio(&mut buffer[..16], 10)?;
///
/// Ok(())
/// }
/// ```
pub fn try_memcpy_fromio(&self, buffer: &mut [u8], offset: usize) -> Result {
if !Self::offset_ok_of_val(offset, buffer) {
return Err(EINVAL);
}
let ptr = self.ptr.wrapping_add(offset);
// SAFETY:
// - The type invariants guarantee that `ptr` is a valid pointer.
// - The bounds of `buffer` are checked with a call to `offset_ok_of_val()`.
unsafe {
bindings::memcpy_fromio(
buffer.as_mut_ptr() as *mut _,
ptr as *const _,
buffer.len() as _,
)
};
Ok(())
}
define_read!(readb, try_readb, u8);
define_read!(readw, try_readw, u16);
define_read!(readl, try_readl, u32);
define_read!(
#[cfg(CONFIG_64BIT)]
readq,
try_readq,
u64
);
define_read!(readb_relaxed, try_readb_relaxed, u8);
define_read!(readw_relaxed, try_readw_relaxed, u16);
define_read!(readl_relaxed, try_readl_relaxed, u32);
define_read!(
#[cfg(CONFIG_64BIT)]
readq_relaxed,
try_readq_relaxed,
u64
);
define_write!(writeb, try_writeb, u8);
define_write!(writew, try_writew, u16);
define_write!(writel, try_writel, u32);
define_write!(
#[cfg(CONFIG_64BIT)]
writeq,
try_writeq,
u64
);
define_write!(writeb_relaxed, try_writeb_relaxed, u8);
define_write!(writew_relaxed, try_writew_relaxed, u16);
define_write!(writel_relaxed, try_writel_relaxed, u32);
define_write!(
#[cfg(CONFIG_64BIT)]
writeq_relaxed,
try_writeq_relaxed,
u64
);
}
impl<const SIZE: usize> Drop for IoMem<SIZE> {
fn drop(&mut self) {
// SAFETY: By the type invariant, `self.ptr` is a value returned by a previous successful
// call to `ioremap`.
unsafe { bindings::iounmap(self.ptr as _) };
}
}