1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
// SPDX-License-Identifier: GPL-2.0

//! Synchronisation primitives where access to their contents can be revoked at runtime.

use crate::{
    str::CStr,
    sync::{Guard, Lock, LockClassKey, LockFactory, LockInfo, NeedsLockClass, ReadLock, WriteLock},
    True,
};
use core::{
    mem::MaybeUninit,
    ops::{Deref, DerefMut},
    pin::Pin,
};

/// The state within the revocable synchronisation primitive.
///
/// We don't use simply `Option<T>` because we need to drop in-place because the contents are
/// implicitly pinned.
///
/// # Invariants
///
/// The `is_available` field determines if `data` is initialised.
pub struct Inner<T> {
    is_available: bool,
    data: MaybeUninit<T>,
}

impl<T> Inner<T> {
    fn new(data: T) -> Self {
        // INVARIANT: `data` is initialised and `is_available` is `true`, so the state matches.
        Self {
            is_available: true,
            data: MaybeUninit::new(data),
        }
    }

    fn drop_in_place(&mut self) {
        if !self.is_available {
            // Already dropped.
            return;
        }

        // INVARIANT: `data` is being dropped and `is_available` is set to `false`, so the state
        // matches.
        self.is_available = false;

        // SAFETY: By the type invariants, `data` is valid because `is_available` was true.
        unsafe { self.data.assume_init_drop() };
    }
}

impl<T> Drop for Inner<T> {
    fn drop(&mut self) {
        self.drop_in_place();
    }
}

/// Revocable synchronisation primitive.
///
/// That is, it wraps synchronisation primitives so that access to their contents can be revoked at
/// runtime, rendering them inacessible.
///
/// Once access is revoked and all concurrent users complete (i.e., all existing instances of
/// [`RevocableGuard`] are dropped), the wrapped object is also dropped.
///
/// For better ergonomics, we advise the use of specialisations of this struct, for example,
/// [`super::RevocableMutex`] and [`super::RevocableRwSemaphore`]. Callers that do not need to
/// sleep while holding on to a guard should use [`crate::revocable::Revocable`] instead, which is
/// more efficient as it uses RCU to keep objects alive.
///
/// # Examples
///
/// ```
/// # use kernel::sync::{Mutex, Revocable};
/// # use kernel::revocable_init;
/// # use core::pin::Pin;
///
/// struct Example {
///     a: u32,
///     b: u32,
/// }
///
/// fn add_two(v: &Revocable<Mutex<()>, Example>) -> Option<u32> {
///     let mut guard = v.try_write()?;
///     guard.a += 2;
///     guard.b += 2;
///     Some(guard.a + guard.b)
/// }
///
/// // SAFETY: We call `revocable_init` immediately below.
/// let mut v = unsafe { Revocable::<Mutex<()>, Example>::new(Example { a: 10, b: 20 }) };
/// // SAFETY: We never move out of `v`.
/// let pinned = unsafe { Pin::new_unchecked(&mut v) };
/// revocable_init!(pinned, "example::v");
/// assert_eq!(add_two(&v), Some(34));
/// v.revoke();
/// assert_eq!(add_two(&v), None);
/// ```
pub struct Revocable<F: LockFactory, T> {
    inner: F::LockedType<Inner<T>>,
}

/// Safely initialises a [`Revocable`] instance with the given name, generating a new lock class.
#[macro_export]
macro_rules! revocable_init {
    ($mutex:expr, $name:literal) => {
        $crate::init_with_lockdep!($mutex, $name)
    };
}

impl<F: LockFactory, T> Revocable<F, T> {
    /// Creates a new revocable instance of the given lock.
    ///
    /// # Safety
    ///
    /// The caller must call [`Revocable::init`] before using the revocable synch primitive.
    pub unsafe fn new(data: T) -> Self {
        Self {
            // SAFETY: The safety requirements of this function require that `Revocable::init`
            // be called before the returned object can be used. Lock initialisation is called
            // from `Revocable::init`.
            inner: unsafe { F::new_lock(Inner::new(data)) },
        }
    }
}

impl<F: LockFactory, T> NeedsLockClass for Revocable<F, T>
where
    F::LockedType<Inner<T>>: NeedsLockClass,
{
    fn init(
        self: Pin<&mut Self>,
        name: &'static CStr,
        key1: &'static LockClassKey,
        key2: &'static LockClassKey,
    ) {
        // SAFETY: `inner` is pinned when `self` is.
        let inner = unsafe { self.map_unchecked_mut(|r| &mut r.inner) };
        inner.init(name, key1, key2);
    }
}

impl<F: LockFactory, T> Revocable<F, T>
where
    F::LockedType<Inner<T>>: Lock<Inner = Inner<T>>,
{
    /// Revokes access to and drops the wrapped object.
    ///
    /// Revocation and dropping happen after ongoing accessors complete.
    pub fn revoke(&self) {
        self.lock().drop_in_place();
    }

    /// Tries to lock the \[revocable\] wrapped object in write (exclusive) mode.
    ///
    /// Returns `None` if the object has been revoked and is therefore no longer accessible.
    ///
    /// Returns a guard that gives access to the object otherwise; the object is guaranteed to
    /// remain accessible while the guard is alive. Callers are allowed to sleep while holding on
    /// to the returned guard.
    pub fn try_write(&self) -> Option<RevocableGuard<'_, F, T, WriteLock>> {
        let inner = self.lock();
        if !inner.is_available {
            return None;
        }
        Some(RevocableGuard::new(inner))
    }

    fn lock(&self) -> Guard<'_, F::LockedType<Inner<T>>> {
        let ctx = self.inner.lock_noguard();
        // SAFETY: The lock was acquired in the call above.
        unsafe { Guard::new(&self.inner, ctx) }
    }
}

impl<F: LockFactory, T> Revocable<F, T>
where
    F::LockedType<Inner<T>>: Lock<ReadLock, Inner = Inner<T>>,
{
    /// Tries to lock the \[revocable\] wrapped object in read (shared) mode.
    ///
    /// Returns `None` if the object has been revoked and is therefore no longer accessible.
    ///
    /// Returns a guard that gives access to the object otherwise; the object is guaranteed to
    /// remain accessible while the guard is alive. Callers are allowed to sleep while holding on
    /// to the returned guard.
    pub fn try_read(&self) -> Option<RevocableGuard<'_, F, T, ReadLock>> {
        let ctx = self.inner.lock_noguard();
        // SAFETY: The lock was acquired in the call above.
        let inner = unsafe { Guard::new(&self.inner, ctx) };
        if !inner.is_available {
            return None;
        }
        Some(RevocableGuard::new(inner))
    }
}

/// A guard that allows access to a revocable object and keeps it alive.
pub struct RevocableGuard<'a, F: LockFactory, T, I: LockInfo>
where
    F::LockedType<Inner<T>>: Lock<I, Inner = Inner<T>>,
{
    guard: Guard<'a, F::LockedType<Inner<T>>, I>,
}

impl<'a, F: LockFactory, T, I: LockInfo> RevocableGuard<'a, F, T, I>
where
    F::LockedType<Inner<T>>: Lock<I, Inner = Inner<T>>,
{
    fn new(guard: Guard<'a, F::LockedType<Inner<T>>, I>) -> Self {
        Self { guard }
    }
}

impl<F: LockFactory, T, I: LockInfo<Writable = True>> RevocableGuard<'_, F, T, I>
where
    F::LockedType<Inner<T>>: Lock<I, Inner = Inner<T>>,
{
    /// Returns a pinned mutable reference to the wrapped object.
    pub fn as_pinned_mut(&mut self) -> Pin<&mut T> {
        // SAFETY: Revocable mutexes must be pinned, so we choose to always project the data as
        // pinned as well (i.e., we guarantee we never move it).
        unsafe { Pin::new_unchecked(&mut *self) }
    }
}

impl<F: LockFactory, T, I: LockInfo> Deref for RevocableGuard<'_, F, T, I>
where
    F::LockedType<Inner<T>>: Lock<I, Inner = Inner<T>>,
{
    type Target = T;

    fn deref(&self) -> &Self::Target {
        unsafe { &*self.guard.data.as_ptr() }
    }
}

impl<F: LockFactory, T, I: LockInfo<Writable = True>> DerefMut for RevocableGuard<'_, F, T, I>
where
    F::LockedType<Inner<T>>: Lock<I, Inner = Inner<T>>,
{
    fn deref_mut(&mut self) -> &mut Self::Target {
        unsafe { &mut *self.guard.data.as_mut_ptr() }
    }
}