1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
// SPDX-License-Identifier: GPL-2.0
//! File systems.
//!
//! C headers: [`include/linux/fs.h`](../../../../include/linux/fs.h)
use crate::{
bindings, error::code::*, error::from_kernel_result, str::CStr, to_result,
types::PointerWrapper, AlwaysRefCounted, Error, Result, ScopeGuard, ThisModule,
};
use alloc::boxed::Box;
use core::{
cell::UnsafeCell,
marker::{PhantomData, PhantomPinned},
pin::Pin,
ptr,
};
use macros::vtable;
pub mod param;
/// Type of superblock keying.
///
/// It determines how C's `fs_context_operations::get_tree` is implemented.
pub enum Super {
/// Only one such superblock may exist.
Single,
/// As [`Super::Single`], but reconfigure if it exists.
SingleReconf,
/// Superblocks with different data pointers may exist.
Keyed,
/// Multiple independent superblocks may exist.
Independent,
/// Uses a block device.
BlockDev,
}
/// A file system context.
///
/// It is used to gather configuration to then mount or reconfigure a file system.
#[vtable]
pub trait Context<T: Type + ?Sized> {
/// Type of the data associated with the context.
type Data: PointerWrapper + Send + Sync + 'static;
/// The typed file system parameters.
///
/// Users are encouraged to define it using the [`crate::define_fs_params`] macro.
const PARAMS: param::SpecTable<'static, Self::Data> = param::SpecTable::empty();
/// Creates a new context.
fn try_new() -> Result<Self::Data>;
/// Parses a parameter that wasn't specified in [`Self::PARAMS`].
fn parse_unknown_param(
_data: &mut Self::Data,
_name: &CStr,
_value: param::Value<'_>,
) -> Result {
Err(ENOPARAM)
}
/// Parses the whole parameter block, potentially skipping regular handling for parts of it.
///
/// The return value is the portion of the input buffer for which the regular handling
/// (involving [`Self::PARAMS`] and [`Self::parse_unknown_param`]) will still be carried out.
/// If it's `None`, the regular handling is not performed at all.
fn parse_monolithic<'a>(
_data: &mut Self::Data,
_buf: Option<&'a mut [u8]>,
) -> Result<Option<&'a mut [u8]>> {
Ok(None)
}
/// Returns the superblock data to be used by this file system context.
///
/// This is only needed when [`Type::SUPER_TYPE`] is [`Super::Keyed`], otherwise it is never
/// called. In the former case, when the fs is being mounted, an existing superblock is reused
/// if one can be found with the same data as the returned value; otherwise a new superblock is
/// created.
fn tree_key(_data: &mut Self::Data) -> Result<T::Data> {
Err(ENOTSUPP)
}
}
struct Tables<T: Type + ?Sized>(T);
impl<T: Type + ?Sized> Tables<T> {
const CONTEXT: bindings::fs_context_operations = bindings::fs_context_operations {
free: Some(Self::free_callback),
parse_param: Some(Self::parse_param_callback),
get_tree: Some(Self::get_tree_callback),
reconfigure: Some(Self::reconfigure_callback),
parse_monolithic: if <T::Context as Context<T>>::HAS_PARSE_MONOLITHIC {
Some(Self::parse_monolithic_callback)
} else {
None
},
dup: None,
};
unsafe extern "C" fn free_callback(fc: *mut bindings::fs_context) {
// SAFETY: The callback contract guarantees that `fc` is valid.
let fc = unsafe { &*fc };
let ptr = fc.fs_private;
if !ptr.is_null() {
// SAFETY: `fs_private` was initialised with the result of a `to_pointer` call in
// `init_fs_context_callback`, so it's ok to call `from_pointer` here.
unsafe { <T::Context as Context<T>>::Data::from_pointer(ptr) };
}
let ptr = fc.s_fs_info;
if !ptr.is_null() {
// SAFETY: `s_fs_info` may be initialised with the result of a `to_pointer` call in
// `get_tree_callback` when keyed superblocks are used (`get_tree_keyed` sets it), so
// it's ok to call `from_pointer` here.
unsafe { T::Data::from_pointer(ptr) };
}
}
unsafe extern "C" fn parse_param_callback(
fc: *mut bindings::fs_context,
param: *mut bindings::fs_parameter,
) -> core::ffi::c_int {
from_kernel_result! {
// SAFETY: The callback contract guarantees that `fc` is valid.
let ptr = unsafe { (*fc).fs_private };
// SAFETY: The value of `ptr` (coming from `fs_private` was initialised in
// `init_fs_context_callback` to the result of an `into_pointer` call. Since the
// context is valid, `from_pointer` wasn't called yet, so `ptr` is valid. Additionally,
// the callback contract guarantees that callbacks are serialised, so it is ok to
// mutably reference it.
let mut data =
unsafe { <<T::Context as Context<T>>::Data as PointerWrapper>::borrow_mut(ptr) };
let mut result = bindings::fs_parse_result::default();
// SAFETY: All parameters are valid at least for the duration of the call.
let opt =
unsafe { bindings::fs_parse(fc, T::Context::PARAMS.first, param, &mut result) };
// SAFETY: The callback contract guarantees that `param` is valid for the duration of
// the callback.
let param = unsafe { &*param };
if opt >= 0 {
let opt = opt as usize;
if opt >= T::Context::PARAMS.handlers.len() {
return Err(EINVAL);
}
T::Context::PARAMS.handlers[opt].handle_param(&mut data, param, &result)?;
return Ok(0);
}
if opt != ENOPARAM.to_kernel_errno() {
return Err(Error::from_kernel_errno(opt));
}
if !T::Context::HAS_PARSE_UNKNOWN_PARAM {
return Err(ENOPARAM);
}
let val = param::Value::from_fs_parameter(param);
// SAFETY: The callback contract guarantees the parameter key to be valid and last at
// least the duration of the callback.
T::Context::parse_unknown_param(
&mut data,
unsafe { CStr::from_char_ptr(param.key) },
val,
)?;
Ok(0)
}
}
unsafe extern "C" fn fill_super_callback(
sb_ptr: *mut bindings::super_block,
fc: *mut bindings::fs_context,
) -> core::ffi::c_int {
from_kernel_result! {
// SAFETY: The callback contract guarantees that `fc` is valid. It also guarantees that
// the callbacks are serialised for a given `fc`, so it is safe to mutably dereference
// it.
let fc = unsafe { &mut *fc };
let ptr = core::mem::replace(&mut fc.fs_private, ptr::null_mut());
// SAFETY: The value of `ptr` (coming from `fs_private` was initialised in
// `init_fs_context_callback` to the result of an `into_pointer` call. The context is
// being used to initialise a superblock, so we took over `ptr` (`fs_private` is set to
// null now) and call `from_pointer` below.
let data =
unsafe { <<T::Context as Context<T>>::Data as PointerWrapper>::from_pointer(ptr) };
// SAFETY: The callback contract guarantees that `sb_ptr` is a unique pointer to a
// newly-created superblock.
let newsb = unsafe { NewSuperBlock::new(sb_ptr) };
T::fill_super(data, newsb)?;
Ok(0)
}
}
unsafe extern "C" fn get_tree_callback(fc: *mut bindings::fs_context) -> core::ffi::c_int {
// N.B. When new types are added below, we may need to update `kill_sb_callback` to ensure
// that we're cleaning up properly.
match T::SUPER_TYPE {
Super::Single => unsafe {
// SAFETY: `fc` is valid per the callback contract. `fill_super_callback` also has
// the right type and is a valid callback.
bindings::get_tree_single(fc, Some(Self::fill_super_callback))
},
Super::SingleReconf => unsafe {
// SAFETY: `fc` is valid per the callback contract. `fill_super_callback` also has
// the right type and is a valid callback.
bindings::get_tree_single_reconf(fc, Some(Self::fill_super_callback))
},
Super::Independent => unsafe {
// SAFETY: `fc` is valid per the callback contract. `fill_super_callback` also has
// the right type and is a valid callback.
bindings::get_tree_nodev(fc, Some(Self::fill_super_callback))
},
Super::BlockDev => unsafe {
// SAFETY: `fc` is valid per the callback contract. `fill_super_callback` also has
// the right type and is a valid callback.
bindings::get_tree_bdev(fc, Some(Self::fill_super_callback))
},
Super::Keyed => {
from_kernel_result! {
// SAFETY: `fc` is valid per the callback contract.
let ctx = unsafe { &*fc };
let ptr = ctx.fs_private;
// SAFETY: The value of `ptr` (coming from `fs_private` was initialised in
// `init_fs_context_callback` to the result of an `into_pointer` call. Since
// the context is valid, `from_pointer` wasn't called yet, so `ptr` is valid.
// Additionally, the callback contract guarantees that callbacks are
// serialised, so it is ok to mutably reference it.
let mut data = unsafe {
<<T::Context as Context<T>>::Data as PointerWrapper>::borrow_mut(ptr)
};
let fs_data = T::Context::tree_key(&mut data)?;
let fs_data_ptr = fs_data.into_pointer();
// `get_tree_keyed` reassigns `ctx.s_fs_info`, which should be ok because
// nowhere else is it assigned a non-null value. However, we add the assert
// below to ensure that there are no unexpected paths on the C side that may do
// this.
assert_eq!(ctx.s_fs_info, core::ptr::null_mut());
// SAFETY: `fc` is valid per the callback contract. `fill_super_callback` also
// has the right type and is a valid callback. Lastly, we just called
// `into_pointer` above, so `fs_data_ptr` is also valid.
to_result(unsafe {
bindings::get_tree_keyed(
fc,
Some(Self::fill_super_callback),
fs_data_ptr as _,
)
})?;
Ok(0)
}
}
}
}
unsafe extern "C" fn reconfigure_callback(_fc: *mut bindings::fs_context) -> core::ffi::c_int {
EINVAL.to_kernel_errno()
}
unsafe extern "C" fn parse_monolithic_callback(
fc: *mut bindings::fs_context,
buf: *mut core::ffi::c_void,
) -> core::ffi::c_int {
from_kernel_result! {
// SAFETY: The callback contract guarantees that `fc` is valid.
let ptr = unsafe { (*fc).fs_private };
// SAFETY: The value of `ptr` (coming from `fs_private` was initialised in
// `init_fs_context_callback` to the result of an `into_pointer` call. Since the
// context is valid, `from_pointer` wasn't called yet, so `ptr` is valid. Additionally,
// the callback contract guarantees that callbacks are serialised, so it is ok to
// mutably reference it.
let mut data =
unsafe { <<T::Context as Context<T>>::Data as PointerWrapper>::borrow_mut(ptr) };
let page = if buf.is_null() {
None
} else {
// SAFETY: This callback is called to handle the `mount` syscall, which takes a
// page-sized buffer as data.
Some(unsafe { &mut *ptr::slice_from_raw_parts_mut(buf.cast(), crate::PAGE_SIZE) })
};
let regular = T::Context::parse_monolithic(&mut data, page)?;
if let Some(buf) = regular {
// SAFETY: Both `fc` and `buf` are guaranteed to be valid; the former because the
// callback is still ongoing and the latter because its lifefime is tied to that of
// `page`, which is also valid for the duration of the callback.
to_result(unsafe {
bindings::generic_parse_monolithic(fc, buf.as_mut_ptr().cast())
})?;
}
Ok(0)
}
}
const SUPER_BLOCK: bindings::super_operations = bindings::super_operations {
alloc_inode: None,
destroy_inode: None,
free_inode: None,
dirty_inode: None,
write_inode: None,
drop_inode: None,
evict_inode: None,
put_super: None,
sync_fs: None,
freeze_super: None,
freeze_fs: None,
thaw_super: None,
unfreeze_fs: None,
statfs: None,
remount_fs: None,
umount_begin: None,
show_options: None,
show_devname: None,
show_path: None,
show_stats: None,
#[cfg(CONFIG_QUOTA)]
quota_read: None,
#[cfg(CONFIG_QUOTA)]
quota_write: None,
#[cfg(CONFIG_QUOTA)]
get_dquots: None,
nr_cached_objects: None,
free_cached_objects: None,
};
}
/// A file system type.
pub trait Type {
/// The context used to build fs configuration before it is mounted or reconfigured.
type Context: Context<Self> + ?Sized;
/// Data associated with each file system instance.
type Data: PointerWrapper + Send + Sync = ();
/// Determines how superblocks for this file system type are keyed.
const SUPER_TYPE: Super;
/// The name of the file system type.
const NAME: &'static CStr;
/// The flags of this file system type.
///
/// It is a combination of the flags in the [`flags`] module.
const FLAGS: i32;
/// Initialises a super block for this file system type.
fn fill_super(
data: <Self::Context as Context<Self>>::Data,
sb: NewSuperBlock<'_, Self>,
) -> Result<&SuperBlock<Self>>;
}
/// File system flags.
pub mod flags {
use crate::bindings;
/// The file system requires a device.
pub const REQUIRES_DEV: i32 = bindings::FS_REQUIRES_DEV as _;
/// The options provided when mounting are in binary form.
pub const BINARY_MOUNTDATA: i32 = bindings::FS_BINARY_MOUNTDATA as _;
/// The file system has a subtype. It is extracted from the name and passed in as a parameter.
pub const HAS_SUBTYPE: i32 = bindings::FS_HAS_SUBTYPE as _;
/// The file system can be mounted by userns root.
pub const USERNS_MOUNT: i32 = bindings::FS_USERNS_MOUNT as _;
/// Disables fanotify permission events.
pub const DISALLOW_NOTIFY_PERM: i32 = bindings::FS_DISALLOW_NOTIFY_PERM as _;
/// The file system has been updated to handle vfs idmappings.
pub const ALLOW_IDMAP: i32 = bindings::FS_ALLOW_IDMAP as _;
/// The file systen will handle `d_move` during `rename` internally.
pub const RENAME_DOES_D_MOVE: i32 = bindings::FS_RENAME_DOES_D_MOVE as _;
}
/// A file system registration.
#[derive(Default)]
pub struct Registration {
is_registered: bool,
fs: UnsafeCell<bindings::file_system_type>,
_pin: PhantomPinned,
}
// SAFETY: `Registration` doesn't really provide any `&self` methods, so it is safe to pass
// references to it around.
unsafe impl Sync for Registration {}
// SAFETY: Both registration and unregistration are implemented in C and safe to be performed from
// any thread, so `Registration` is `Send`.
unsafe impl Send for Registration {}
impl Registration {
/// Creates a new file system registration.
///
/// It is not visible or accessible yet. A successful call to [`Registration::register`] needs
/// to be made before users can mount it.
pub fn new() -> Self {
Self {
is_registered: false,
fs: UnsafeCell::new(bindings::file_system_type::default()),
_pin: PhantomPinned,
}
}
/// Registers a file system so that it can be mounted by users.
///
/// The file system is described by the [`Type`] argument.
///
/// It is automatically unregistered when the registration is dropped.
pub fn register<T: Type + ?Sized>(self: Pin<&mut Self>, module: &'static ThisModule) -> Result {
// SAFETY: We never move out of `this`.
let this = unsafe { self.get_unchecked_mut() };
if this.is_registered {
return Err(EINVAL);
}
let mut fs = this.fs.get_mut();
fs.owner = module.0;
fs.name = T::NAME.as_char_ptr();
fs.fs_flags = T::FLAGS;
fs.parameters = T::Context::PARAMS.first;
fs.init_fs_context = Some(Self::init_fs_context_callback::<T>);
fs.kill_sb = Some(Self::kill_sb_callback::<T>);
// SAFETY: This block registers all fs type keys with lockdep. We just need the memory
// locations to be owned by the caller, which is the case.
unsafe {
bindings::lockdep_register_key(&mut fs.s_lock_key);
bindings::lockdep_register_key(&mut fs.s_umount_key);
bindings::lockdep_register_key(&mut fs.s_vfs_rename_key);
bindings::lockdep_register_key(&mut fs.i_lock_key);
bindings::lockdep_register_key(&mut fs.i_mutex_key);
bindings::lockdep_register_key(&mut fs.invalidate_lock_key);
bindings::lockdep_register_key(&mut fs.i_mutex_dir_key);
for key in &mut fs.s_writers_key {
bindings::lockdep_register_key(key);
}
}
let ptr = this.fs.get();
// SAFETY: `ptr` as valid as it points to the `self.fs`.
let key_guard = ScopeGuard::new(|| unsafe { Self::unregister_keys(ptr) });
// SAFETY: Pointers stored in `fs` are either static so will live for as long as the
// registration is active (it is undone in `drop`).
to_result(unsafe { bindings::register_filesystem(ptr) })?;
key_guard.dismiss();
this.is_registered = true;
Ok(())
}
/// Unregisters the lockdep keys in the file system type.
///
/// # Safety
///
/// `fs` must be non-null and valid.
unsafe fn unregister_keys(fs: *mut bindings::file_system_type) {
// SAFETY: This block unregisters all fs type keys from lockdep. They must have been
// registered before.
unsafe {
bindings::lockdep_unregister_key(ptr::addr_of_mut!((*fs).s_lock_key));
bindings::lockdep_unregister_key(ptr::addr_of_mut!((*fs).s_umount_key));
bindings::lockdep_unregister_key(ptr::addr_of_mut!((*fs).s_vfs_rename_key));
bindings::lockdep_unregister_key(ptr::addr_of_mut!((*fs).i_lock_key));
bindings::lockdep_unregister_key(ptr::addr_of_mut!((*fs).i_mutex_key));
bindings::lockdep_unregister_key(ptr::addr_of_mut!((*fs).invalidate_lock_key));
bindings::lockdep_unregister_key(ptr::addr_of_mut!((*fs).i_mutex_dir_key));
for i in 0..(*fs).s_writers_key.len() {
bindings::lockdep_unregister_key(ptr::addr_of_mut!((*fs).s_writers_key[i]));
}
}
}
unsafe extern "C" fn init_fs_context_callback<T: Type + ?Sized>(
fc_ptr: *mut bindings::fs_context,
) -> core::ffi::c_int {
from_kernel_result! {
let data = T::Context::try_new()?;
// SAFETY: The callback contract guarantees that `fc_ptr` is the only pointer to a
// newly-allocated fs context, so it is safe to mutably reference it.
let fc = unsafe { &mut *fc_ptr };
fc.fs_private = data.into_pointer() as _;
fc.ops = &Tables::<T>::CONTEXT;
Ok(0)
}
}
unsafe extern "C" fn kill_sb_callback<T: Type + ?Sized>(sb_ptr: *mut bindings::super_block) {
if let Super::BlockDev = T::SUPER_TYPE {
// SAFETY: When the superblock type is `BlockDev`, we have a block device so it's safe
// to call `kill_block_super`. Additionally, the callback contract guarantees that
// `sb_ptr` is valid.
unsafe { bindings::kill_block_super(sb_ptr) }
} else {
// SAFETY: We always call a `get_tree_nodev` variant from `get_tree_callback` without a
// device when `T::SUPER_TYPE` is not `BlockDev`, so we never have a device in such
// cases, therefore it is ok to call the function below. Additionally, the callback
// contract guarantees that `sb_ptr` is valid.
unsafe { bindings::kill_anon_super(sb_ptr) }
}
// SAFETY: The callback contract guarantees that `sb_ptr` is valid.
let sb = unsafe { &*sb_ptr };
// SAFETY: The `kill_sb` callback being called implies that the `s_type` field is valid.
unsafe { Self::unregister_keys(sb.s_type) };
let ptr = sb.s_fs_info;
if !ptr.is_null() {
// SAFETY: The only place where `s_fs_info` is assigned is `NewSuperBlock::init`, where
// it's initialised with the result of a `to_pointer` call. We checked above that ptr
// is non-null because it would be null if we never reached the point where we init the
// field.
unsafe { T::Data::from_pointer(ptr) };
}
}
}
impl Drop for Registration {
fn drop(&mut self) {
if self.is_registered {
// SAFETY: When `is_registered` is `true`, a previous call to `register_filesystem` has
// succeeded, so it is safe to unregister here.
unsafe { bindings::unregister_filesystem(self.fs.get()) };
}
}
}
/// State of [`NewSuperBlock`] that indicates that [`NewSuperBlock::init`] needs to be called
/// eventually.
pub struct NeedsInit;
/// State of [`NewSuperBlock`] that indicates that [`NewSuperBlock::init_root`] needs to be called
/// eventually.
pub struct NeedsRoot;
/// Required superblock parameters.
///
/// This is used in [`NewSuperBlock::init`].
pub struct SuperParams {
/// The magic number of the superblock.
pub magic: u32,
/// The size of a block in powers of 2 (i.e., for a value of `n`, the size is `2^n`.
pub blocksize_bits: u8,
/// Maximum size of a file.
pub maxbytes: i64,
/// Granularity of c/m/atime in ns (cannot be worse than a second).
pub time_gran: u32,
}
impl SuperParams {
/// Default value for instances of [`SuperParams`].
pub const DEFAULT: Self = Self {
magic: 0,
blocksize_bits: crate::PAGE_SIZE as _,
maxbytes: bindings::MAX_LFS_FILESIZE,
time_gran: 1,
};
}
/// A superblock that is still being initialised.
///
/// It uses type states to ensure that callers use the right sequence of calls.
///
/// # Invariants
///
/// The superblock is a newly-created one and this is the only active pointer to it.
pub struct NewSuperBlock<'a, T: Type + ?Sized, S = NeedsInit> {
sb: *mut bindings::super_block,
_p: PhantomData<(&'a T, S)>,
}
impl<'a, T: Type + ?Sized> NewSuperBlock<'a, T, NeedsInit> {
/// Creates a new instance of [`NewSuperBlock`].
///
/// # Safety
///
/// `sb` must point to a newly-created superblock and it must be the only active pointer to it.
unsafe fn new(sb: *mut bindings::super_block) -> Self {
// INVARIANT: The invariants are satisfied by the safety requirements of this function.
Self {
sb,
_p: PhantomData,
}
}
/// Initialises the superblock so that it transitions to the [`NeedsRoot`] type state.
pub fn init(
self,
data: T::Data,
params: &SuperParams,
) -> Result<NewSuperBlock<'a, T, NeedsRoot>> {
// SAFETY: The type invariant guarantees that `self.sb` is the only pointer to a
// newly-allocated superblock, so it is safe to mutably reference it.
let sb = unsafe { &mut *self.sb };
sb.s_magic = params.magic as _;
sb.s_op = &Tables::<T>::SUPER_BLOCK;
sb.s_maxbytes = params.maxbytes;
sb.s_time_gran = params.time_gran;
sb.s_blocksize_bits = params.blocksize_bits;
sb.s_blocksize = 1;
if sb.s_blocksize.leading_zeros() < params.blocksize_bits.into() {
return Err(EINVAL);
}
sb.s_blocksize = 1 << sb.s_blocksize_bits;
// Keyed file systems already have `s_fs_info` initialised.
let info = data.into_pointer() as *mut _;
if let Super::Keyed = T::SUPER_TYPE {
// SAFETY: We just called `into_pointer` above.
unsafe { T::Data::from_pointer(info) };
if sb.s_fs_info != info {
return Err(EINVAL);
}
} else {
sb.s_fs_info = info;
}
Ok(NewSuperBlock {
sb: self.sb,
_p: PhantomData,
})
}
}
impl<'a, T: Type + ?Sized> NewSuperBlock<'a, T, NeedsRoot> {
/// Initialises the root of the superblock.
pub fn init_root(self) -> Result<&'a SuperBlock<T>> {
// The following is temporary code to create the root inode and dentry. It will be replaced
// once we allow inodes and dentries to be created directly from Rust code.
// SAFETY: `sb` is initialised (`NeedsRoot` typestate implies it), so it is safe to pass it
// to `new_inode`.
let inode = unsafe { bindings::new_inode(self.sb) };
if inode.is_null() {
return Err(ENOMEM);
}
{
// SAFETY: This is a newly-created inode. No other references to it exist, so it is
// safe to mutably dereference it.
let inode = unsafe { &mut *inode };
// SAFETY: `current_time` requires that `inode.sb` be valid, which is the case here
// since we allocated the inode through the superblock.
let time = unsafe { bindings::current_time(inode) };
inode.i_ino = 1;
inode.i_mode = (bindings::S_IFDIR | 0o755) as _;
inode.i_mtime = time;
inode.i_atime = time;
inode.i_ctime = time;
// SAFETY: `simple_dir_operations` never changes, it's safe to reference it.
inode.__bindgen_anon_3.i_fop = unsafe { &bindings::simple_dir_operations };
// SAFETY: `simple_dir_inode_operations` never changes, it's safe to reference it.
inode.i_op = unsafe { &bindings::simple_dir_inode_operations };
// SAFETY: `inode` is valid for write.
unsafe { bindings::set_nlink(inode, 2) };
}
// SAFETY: `d_make_root` requires that `inode` be valid and referenced, which is the
// case for this call.
//
// It takes over the inode, even on failure, so we don't need to clean it up.
let dentry = unsafe { bindings::d_make_root(inode) };
if dentry.is_null() {
return Err(ENOMEM);
}
// SAFETY: The typestate guarantees that `self.sb` is valid.
unsafe { (*self.sb).s_root = dentry };
// SAFETY: The typestate guarantees that `self.sb` is initialised and we just finished
// setting its root, so it's a fully ready superblock.
Ok(unsafe { &mut *self.sb.cast() })
}
}
/// A file system super block.
///
/// Wraps the kernel's `struct super_block`.
#[repr(transparent)]
pub struct SuperBlock<T: Type + ?Sized>(
pub(crate) UnsafeCell<bindings::super_block>,
PhantomData<T>,
);
/// Wraps the kernel's `struct inode`.
///
/// # Invariants
///
/// Instances of this type are always ref-counted, that is, a call to `ihold` ensures that the
/// allocation remains valid at least until the matching call to `iput`.
#[repr(transparent)]
pub struct INode(pub(crate) UnsafeCell<bindings::inode>);
// SAFETY: The type invariants guarantee that `INode` is always ref-counted.
unsafe impl AlwaysRefCounted for INode {
fn inc_ref(&self) {
// SAFETY: The existence of a shared reference means that the refcount is nonzero.
unsafe { bindings::ihold(self.0.get()) };
}
unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
// SAFETY: The safety requirements guarantee that the refcount is nonzero.
unsafe { bindings::iput(obj.cast().as_ptr()) }
}
}
/// Wraps the kernel's `struct dentry`.
///
/// # Invariants
///
/// Instances of this type are always ref-counted, that is, a call to `dget` ensures that the
/// allocation remains valid at least until the matching call to `dput`.
#[repr(transparent)]
pub struct DEntry(pub(crate) UnsafeCell<bindings::dentry>);
// SAFETY: The type invariants guarantee that `DEntry` is always ref-counted.
unsafe impl AlwaysRefCounted for DEntry {
fn inc_ref(&self) {
// SAFETY: The existence of a shared reference means that the refcount is nonzero.
unsafe { bindings::dget(self.0.get()) };
}
unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
// SAFETY: The safety requirements guarantee that the refcount is nonzero.
unsafe { bindings::dput(obj.cast().as_ptr()) }
}
}
/// Wraps the kernel's `struct filename`.
#[repr(transparent)]
pub struct Filename(pub(crate) UnsafeCell<bindings::filename>);
impl Filename {
/// Creates a reference to a [`Filename`] from a valid pointer.
///
/// # Safety
///
/// The caller must ensure that `ptr` is valid and remains valid for the lifetime of the
/// returned [`Filename`] instance.
pub(crate) unsafe fn from_ptr<'a>(ptr: *const bindings::filename) -> &'a Filename {
// SAFETY: The safety requirements guarantee the validity of the dereference, while the
// `Filename` type being transparent makes the cast ok.
unsafe { &*ptr.cast() }
}
}
/// Kernel module that exposes a single file system implemented by `T`.
pub struct Module<T: Type> {
_fs: Pin<Box<Registration>>,
_p: PhantomData<T>,
}
impl<T: Type + Sync> crate::Module for Module<T> {
fn init(_name: &'static CStr, module: &'static ThisModule) -> Result<Self> {
let mut reg = Pin::from(Box::try_new(Registration::new())?);
reg.as_mut().register::<T>(module)?;
Ok(Self {
_fs: reg,
_p: PhantomData,
})
}
}
/// Declares a kernel module that exposes a single file system.
///
/// The `type` argument must be a type which implements the [`Type`] trait. Also accepts various
/// forms of kernel metadata.
///
/// # Examples
///
/// ```ignore
/// use kernel::prelude::*;
/// use kernel::{c_str, fs};
///
/// module_fs! {
/// type: MyFs,
/// name: b"my_fs_kernel_module",
/// author: b"Rust for Linux Contributors",
/// description: b"My very own file system kernel module!",
/// license: b"GPL",
/// }
///
/// struct MyFs;
///
/// #[vtable]
/// impl fs::Context<Self> for MyFs {
/// type Data = ();
/// fn try_new() -> Result {
/// Ok(())
/// }
/// }
///
/// impl fs::Type for MyFs {
/// type Context = Self;
/// const SUPER_TYPE: fs::Super = fs::Super::Independent;
/// const NAME: &'static CStr = c_str!("example");
/// const FLAGS: i32 = 0;
///
/// fn fill_super(_data: (), sb: fs::NewSuperBlock<'_, Self>) -> Result<&fs::SuperBlock<Self>> {
/// let sb = sb.init(
/// (),
/// &fs::SuperParams {
/// magic: 0x6578616d,
/// ..fs::SuperParams::DEFAULT
/// },
/// )?;
/// let sb = sb.init_root()?;
/// Ok(sb)
/// }
/// }
/// ```
#[macro_export]
macro_rules! module_fs {
(type: $type:ty, $($f:tt)*) => {
type ModuleType = $crate::fs::Module<$type>;
$crate::macros::module! {
type: ModuleType,
$($f)*
}
}
}