1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
// SPDX-License-Identifier: GPL-2.0

//! A kernel sequential lock (seqlock).
//!
//! This module allows Rust code to use the sequential locks based on the kernel's `seqcount_t` and
//! any locks implementing the [`LockFactory`] trait.
//!
//! See <https://www.kernel.org/doc/Documentation/locking/seqlock.rst>.

use super::{Guard, Lock, LockClassKey, LockFactory, LockIniter, NeedsLockClass, ReadLock};
use crate::{bindings, str::CStr, Opaque};
use core::{cell::UnsafeCell, marker::PhantomPinned, ops::Deref, pin::Pin};

/// Exposes sequential locks backed by the kernel's `seqcount_t`.
///
/// The write-side critical section is protected by a lock implementing the [`LockFactory`] trait.
///
/// # Examples
///
/// ```
/// use core::sync::atomic::{AtomicU32, Ordering};
/// use kernel::sync::{SeqLock, SpinLock};
///
/// struct Example {
///     a: AtomicU32,
///     b: AtomicU32,
/// }
///
/// fn get_sum(v: &SeqLock<SpinLock<Example>>) -> u32 {
///     // Use `access` to access the fields of `Example`.
///     v.access(|e| e.a.load(Ordering::Relaxed) + e.b.load(Ordering::Relaxed))
/// }
///
/// fn get_sum_with_guard(v: &SeqLock<SpinLock<Example>>) -> u32 {
///     // Use `read` and `need_retry` in a loop to access the fields of `Example`.
///     loop {
///         let guard = v.read();
///         let sum = guard.a.load(Ordering::Relaxed) + guard.b.load(Ordering::Relaxed);
///         if !guard.need_retry() {
///             break sum;
///         }
///     }
/// }
///
/// fn inc_each(v: &SeqLock<SpinLock<Example>>) {
///     // Use a write-side guard to access the fields of `Example`.
///     let guard = v.write();
///     let a = guard.a.load(Ordering::Relaxed);
///     guard.a.store(a + 1, Ordering::Relaxed);
///     let b = guard.b.load(Ordering::Relaxed);
///     guard.b.store(b + 1, Ordering::Relaxed);
/// }
/// ```
pub struct SeqLock<L: Lock + ?Sized> {
    _p: PhantomPinned,
    count: Opaque<bindings::seqcount>,
    write_lock: L,
}

// SAFETY: `SeqLock` can be transferred across thread boundaries iff the data it protects and the
// underlying lock can.
#[allow(clippy::non_send_fields_in_send_ty)]
unsafe impl<L: Lock + Send> Send for SeqLock<L> where L::Inner: Send {}

// SAFETY: `SeqLock` allows concurrent access to the data it protects by both readers and writers,
// so it requires that the data it protects be `Sync`, as well as the underlying lock.
unsafe impl<L: Lock + Sync> Sync for SeqLock<L> where L::Inner: Sync {}

impl<L: Lock> SeqLock<L> {
    /// Constructs a new instance of [`SeqLock`].
    ///
    /// # Safety
    ///
    /// The caller must call [`SeqLock::init`] before using the seqlock.
    pub unsafe fn new(data: L::Inner) -> Self
    where
        L: LockFactory<LockedType<L::Inner> = L>,
        L::Inner: Sized,
    {
        Self {
            _p: PhantomPinned,
            count: Opaque::uninit(),
            // SAFETY: `L::init_lock` is called from `SeqLock::init`, which is required to be
            // called by the function's safety requirements.
            write_lock: unsafe { L::new_lock(data) },
        }
    }
}

impl<L: Lock + ?Sized> SeqLock<L> {
    /// Accesses the protected data in read mode.
    ///
    /// Readers and writers are allowed to run concurrently, so callers must check if they need to
    /// refetch the values before they are used (e.g., because a writer changed them concurrently,
    /// rendering them potentially inconsistent). The check is performed via calls to
    /// [`SeqLockReadGuard::need_retry`].
    pub fn read(&self) -> SeqLockReadGuard<'_, L> {
        SeqLockReadGuard {
            lock: self,
            // SAFETY: `count` contains valid memory.
            start_count: unsafe { bindings::read_seqcount_begin(self.count.get()) },
        }
    }

    /// Accesses the protected data in read mode.
    ///
    /// The provided closure is called repeatedly if it may have accessed inconsistent data (e.g.,
    /// because a concurrent writer modified it). This is a wrapper around [`SeqLock::read`] and
    /// [`SeqLockReadGuard::need_retry`] in a loop.
    pub fn access<F: Fn(&L::Inner) -> R, R>(&self, cb: F) -> R {
        loop {
            let guard = self.read();
            let ret = cb(&guard);
            if !guard.need_retry() {
                return ret;
            }
        }
    }

    /// Locks the underlying lock and returns a guard that allows access to the protected data.
    ///
    /// The guard is not mutable though because readers are still allowed to concurrently access
    /// the data. The protected data structure needs to provide interior mutability itself (e.g.,
    /// via atomic types) for the individual fields that can be mutated.
    pub fn write(&self) -> Guard<'_, Self, ReadLock> {
        let ctx = self.lock_noguard();
        // SAFETY: The seqlock was just acquired.
        unsafe { Guard::new(self, ctx) }
    }
}

impl<L: LockIniter + Lock + ?Sized> NeedsLockClass for SeqLock<L> {
    fn init(
        mut self: Pin<&mut Self>,
        name: &'static CStr,
        key1: &'static LockClassKey,
        key2: &'static LockClassKey,
    ) {
        // SAFETY: `write_lock` is pinned when `self` is.
        let pinned = unsafe { self.as_mut().map_unchecked_mut(|s| &mut s.write_lock) };
        pinned.init_lock(name, key1);
        // SAFETY: `key2` is valid as it has a static lifetime.
        unsafe { bindings::__seqcount_init(self.count.get(), name.as_char_ptr(), key2.get()) };
    }
}

// SAFETY: The underlying lock ensures mutual exclusion.
unsafe impl<L: Lock + ?Sized> Lock<ReadLock> for SeqLock<L> {
    type Inner = L::Inner;
    type GuardContext = L::GuardContext;

    fn lock_noguard(&self) -> L::GuardContext {
        let ctx = self.write_lock.lock_noguard();
        // SAFETY: `count` contains valid memory.
        unsafe { bindings::write_seqcount_begin(self.count.get()) };
        ctx
    }

    fn relock(&self, ctx: &mut L::GuardContext) {
        self.write_lock.relock(ctx);
        // SAFETY: `count` contains valid memory.
        unsafe { bindings::write_seqcount_begin(self.count.get()) };
    }

    unsafe fn unlock(&self, ctx: &mut L::GuardContext) {
        // SAFETY: The safety requirements of the function ensure that lock is owned by the caller.
        unsafe { bindings::write_seqcount_end(self.count.get()) };
        // SAFETY: The safety requirements of the function ensure that lock is owned by the caller.
        unsafe { self.write_lock.unlock(ctx) };
    }

    fn locked_data(&self) -> &UnsafeCell<L::Inner> {
        self.write_lock.locked_data()
    }
}

/// Allows read-side access to data protected by a sequential lock.
pub struct SeqLockReadGuard<'a, L: Lock + ?Sized> {
    lock: &'a SeqLock<L>,
    start_count: u32,
}

impl<L: Lock + ?Sized> SeqLockReadGuard<'_, L> {
    /// Determine if the callers needs to retry reading values.
    ///
    /// It returns `true` when a concurrent writer ran between the guard being created and
    /// [`Self::need_retry`] being called.
    pub fn need_retry(&self) -> bool {
        // SAFETY: `count` is valid because the guard guarantees that the lock remains alive.
        unsafe { bindings::read_seqcount_retry(self.lock.count.get(), self.start_count) != 0 }
    }
}

impl<L: Lock + ?Sized> Deref for SeqLockReadGuard<'_, L> {
    type Target = L::Inner;

    fn deref(&self) -> &Self::Target {
        // SAFETY: We only ever allow shared access to the protected data.
        unsafe { &*self.lock.locked_data().get() }
    }
}