1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
// SPDX-License-Identifier: GPL-2.0
//! Generic devices that are part of the kernel's driver model.
//!
//! C header: [`include/linux/device.h`](../../../../include/linux/device.h)
#[cfg(CONFIG_COMMON_CLK)]
use crate::{clk::Clk, error::from_kernel_err_ptr};
use crate::{
bindings,
revocable::{Revocable, RevocableGuard},
str::CStr,
sync::{LockClassKey, NeedsLockClass, RevocableMutex, RevocableMutexGuard, UniqueRef},
Result,
};
use core::{
fmt,
ops::{Deref, DerefMut},
pin::Pin,
};
#[cfg(CONFIG_PRINTK)]
use crate::c_str;
/// A raw device.
///
/// # Safety
///
/// Implementers must ensure that the `*mut device` returned by [`RawDevice::raw_device`] is
/// related to `self`, that is, actions on it will affect `self`. For example, if one calls
/// `get_device`, then the refcount on the device represented by `self` will be incremented.
///
/// Additionally, implementers must ensure that the device is never renamed. Commit a5462516aa99
/// ("driver-core: document restrictions on device_rename()") has details on why `device_rename`
/// should not be used.
pub unsafe trait RawDevice {
/// Returns the raw `struct device` related to `self`.
fn raw_device(&self) -> *mut bindings::device;
/// Returns the name of the device.
fn name(&self) -> &CStr {
let ptr = self.raw_device();
// SAFETY: `ptr` is valid because `self` keeps it alive.
let name = unsafe { bindings::dev_name(ptr) };
// SAFETY: The name of the device remains valid while it is alive (because the device is
// never renamed, per the safety requirement of this trait). This is guaranteed to be the
// case because the reference to `self` outlives the one of the returned `CStr` (enforced
// by the compiler because of their lifetimes).
unsafe { CStr::from_char_ptr(name) }
}
/// Lookups a clock producer consumed by this device.
///
/// Returns a managed reference to the clock producer.
#[cfg(CONFIG_COMMON_CLK)]
fn clk_get(&self, id: Option<&CStr>) -> Result<Clk> {
let id_ptr = match id {
Some(cstr) => cstr.as_char_ptr(),
None => core::ptr::null(),
};
// SAFETY: `id_ptr` is optional and may be either a valid pointer
// from the type invariant or NULL otherwise.
let clk_ptr = unsafe { from_kernel_err_ptr(bindings::clk_get(self.raw_device(), id_ptr)) }?;
// SAFETY: Clock is initialized with valid pointer returned from `bindings::clk_get` call.
unsafe { Ok(Clk::new(clk_ptr)) }
}
/// Prints an emergency-level message (level 0) prefixed with device information.
///
/// More details are available from [`dev_emerg`].
fn pr_emerg(&self, args: fmt::Arguments<'_>) {
// SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
unsafe { self.printk(bindings::KERN_EMERG, args) };
}
/// Prints an alert-level message (level 1) prefixed with device information.
///
/// More details are available from [`dev_alert`].
fn pr_alert(&self, args: fmt::Arguments<'_>) {
// SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
unsafe { self.printk(bindings::KERN_ALERT, args) };
}
/// Prints a critical-level message (level 2) prefixed with device information.
///
/// More details are available from [`dev_crit`].
fn pr_crit(&self, args: fmt::Arguments<'_>) {
// SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
unsafe { self.printk(bindings::KERN_CRIT, args) };
}
/// Prints an error-level message (level 3) prefixed with device information.
///
/// More details are available from [`dev_err`].
fn pr_err(&self, args: fmt::Arguments<'_>) {
// SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
unsafe { self.printk(bindings::KERN_ERR, args) };
}
/// Prints a warning-level message (level 4) prefixed with device information.
///
/// More details are available from [`dev_warn`].
fn pr_warn(&self, args: fmt::Arguments<'_>) {
// SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
unsafe { self.printk(bindings::KERN_WARNING, args) };
}
/// Prints a notice-level message (level 5) prefixed with device information.
///
/// More details are available from [`dev_notice`].
fn pr_notice(&self, args: fmt::Arguments<'_>) {
// SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
unsafe { self.printk(bindings::KERN_NOTICE, args) };
}
/// Prints an info-level message (level 6) prefixed with device information.
///
/// More details are available from [`dev_info`].
fn pr_info(&self, args: fmt::Arguments<'_>) {
// SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
unsafe { self.printk(bindings::KERN_INFO, args) };
}
/// Prints a debug-level message (level 7) prefixed with device information.
///
/// More details are available from [`dev_dbg`].
fn pr_dbg(&self, args: fmt::Arguments<'_>) {
if cfg!(debug_assertions) {
// SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
unsafe { self.printk(bindings::KERN_DEBUG, args) };
}
}
/// Prints the provided message to the console.
///
/// # Safety
///
/// Callers must ensure that `klevel` is null-terminated; in particular, one of the
/// `KERN_*`constants, for example, `KERN_CRIT`, `KERN_ALERT`, etc.
#[cfg_attr(not(CONFIG_PRINTK), allow(unused_variables))]
unsafe fn printk(&self, klevel: &[u8], msg: fmt::Arguments<'_>) {
// SAFETY: `klevel` is null-terminated and one of the kernel constants. `self.raw_device`
// is valid because `self` is valid. The "%pA" format string expects a pointer to
// `fmt::Arguments`, which is what we're passing as the last argument.
#[cfg(CONFIG_PRINTK)]
unsafe {
bindings::_dev_printk(
klevel as *const _ as *const core::ffi::c_char,
self.raw_device(),
c_str!("%pA").as_char_ptr(),
&msg as *const _ as *const core::ffi::c_void,
)
};
}
}
/// A ref-counted device.
///
/// # Invariants
///
/// `ptr` is valid, non-null, and has a non-zero reference count. One of the references is owned by
/// `self`, and will be decremented when `self` is dropped.
pub struct Device {
pub(crate) ptr: *mut bindings::device,
}
// SAFETY: `Device` only holds a pointer to a C device, which is safe to be used from any thread.
unsafe impl Send for Device {}
// SAFETY: `Device` only holds a pointer to a C device, references to which are safe to be used
// from any thread.
unsafe impl Sync for Device {}
impl Device {
/// Creates a new device instance.
///
/// # Safety
///
/// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count.
pub unsafe fn new(ptr: *mut bindings::device) -> Self {
// SAFETY: By the safety requirements, ptr is valid and its refcounted will be incremented.
unsafe { bindings::get_device(ptr) };
// INVARIANT: The safety requirements satisfy all but one invariant, which is that `self`
// owns a reference. This is satisfied by the call to `get_device` above.
Self { ptr }
}
/// Creates a new device instance from an existing [`RawDevice`] instance.
pub fn from_dev(dev: &dyn RawDevice) -> Self {
// SAFETY: The requirements are satisfied by the existence of `RawDevice` and its safety
// requirements.
unsafe { Self::new(dev.raw_device()) }
}
}
// SAFETY: The device returned by `raw_device` is the one for which we hold a reference.
unsafe impl RawDevice for Device {
fn raw_device(&self) -> *mut bindings::device {
self.ptr
}
}
impl Drop for Device {
fn drop(&mut self) {
// SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to
// relinquish it now.
unsafe { bindings::put_device(self.ptr) };
}
}
/// Device data.
///
/// When a device is removed (for whatever reason, for example, because the device was unplugged or
/// because the user decided to unbind the driver), the driver is given a chance to clean its state
/// up, and all io resources should ideally not be used anymore.
///
/// However, the device data is reference-counted because other subsystems hold pointers to it. So
/// some device state must be freed and not used anymore, while others must remain accessible.
///
/// This struct separates the device data into three categories:
/// 1. Registrations: are destroyed when the device is removed, but before the io resources
/// become inaccessible.
/// 2. Io resources: are available until the device is removed.
/// 3. General data: remain available as long as the ref count is nonzero.
///
/// This struct implements the `DeviceRemoval` trait so that it can clean resources up even if not
/// explicitly called by the device drivers.
pub struct Data<T, U, V> {
registrations: RevocableMutex<T>,
resources: Revocable<U>,
general: V,
}
/// Safely creates an new reference-counted instance of [`Data`].
#[doc(hidden)]
#[macro_export]
macro_rules! new_device_data {
($reg:expr, $res:expr, $gen:expr, $name:literal) => {{
static CLASS1: $crate::sync::LockClassKey = $crate::sync::LockClassKey::new();
static CLASS2: $crate::sync::LockClassKey = $crate::sync::LockClassKey::new();
let regs = $reg;
let res = $res;
let gen = $gen;
let name = $crate::c_str!($name);
$crate::device::Data::try_new(regs, res, gen, name, &CLASS1, &CLASS2)
}};
}
impl<T, U, V> Data<T, U, V> {
/// Creates a new instance of `Data`.
///
/// It is recommended that the [`new_device_data`] macro be used as it automatically creates
/// the lock classes.
pub fn try_new(
registrations: T,
resources: U,
general: V,
name: &'static CStr,
key1: &'static LockClassKey,
key2: &'static LockClassKey,
) -> Result<Pin<UniqueRef<Self>>> {
let mut ret = Pin::from(UniqueRef::try_new(Self {
// SAFETY: We call `RevocableMutex::init` below.
registrations: unsafe { RevocableMutex::new(registrations) },
resources: Revocable::new(resources),
general,
})?);
// SAFETY: `Data::registrations` is pinned when `Data` is.
let pinned = unsafe { ret.as_mut().map_unchecked_mut(|d| &mut d.registrations) };
pinned.init(name, key1, key2);
Ok(ret)
}
/// Returns the resources if they're still available.
pub fn resources(&self) -> Option<RevocableGuard<'_, U>> {
self.resources.try_access()
}
/// Returns the locked registrations if they're still available.
pub fn registrations(&self) -> Option<RevocableMutexGuard<'_, T>> {
self.registrations.try_write()
}
}
impl<T, U, V> crate::driver::DeviceRemoval for Data<T, U, V> {
fn device_remove(&self) {
// We revoke the registrations first so that resources are still available to them during
// unregistration.
self.registrations.revoke();
// Release resources now. General data remains available.
self.resources.revoke();
}
}
impl<T, U, V> Deref for Data<T, U, V> {
type Target = V;
fn deref(&self) -> &V {
&self.general
}
}
impl<T, U, V> DerefMut for Data<T, U, V> {
fn deref_mut(&mut self) -> &mut V {
&mut self.general
}
}
#[doc(hidden)]
#[macro_export]
macro_rules! dev_printk {
($method:ident, $dev:expr, $($f:tt)*) => {
{
// We have an explicity `use` statement here so that callers of this macro are not
// required to explicitly use the `RawDevice` trait to use its functions.
use $crate::device::RawDevice;
($dev).$method(core::format_args!($($f)*));
}
}
}
/// Prints an emergency-level message (level 0) prefixed with device information.
///
/// This level should be used if the system is unusable.
///
/// Equivalent to the kernel's `dev_emerg` macro.
///
/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
/// [`core::fmt`] and [`alloc::format!`].
///
/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
///
/// # Examples
///
/// ```
/// # use kernel::device::Device;
///
/// fn example(dev: &Device) {
/// dev_emerg!(dev, "hello {}\n", "there");
/// }
/// ```
#[macro_export]
macro_rules! dev_emerg {
($($f:tt)*) => { $crate::dev_printk!(pr_emerg, $($f)*); }
}
/// Prints an alert-level message (level 1) prefixed with device information.
///
/// This level should be used if action must be taken immediately.
///
/// Equivalent to the kernel's `dev_alert` macro.
///
/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
/// [`core::fmt`] and [`alloc::format!`].
///
/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
///
/// # Examples
///
/// ```
/// # use kernel::device::Device;
///
/// fn example(dev: &Device) {
/// dev_alert!(dev, "hello {}\n", "there");
/// }
/// ```
#[macro_export]
macro_rules! dev_alert {
($($f:tt)*) => { $crate::dev_printk!(pr_alert, $($f)*); }
}
/// Prints a critical-level message (level 2) prefixed with device information.
///
/// This level should be used in critical conditions.
///
/// Equivalent to the kernel's `dev_crit` macro.
///
/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
/// [`core::fmt`] and [`alloc::format!`].
///
/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
///
/// # Examples
///
/// ```
/// # use kernel::device::Device;
///
/// fn example(dev: &Device) {
/// dev_crit!(dev, "hello {}\n", "there");
/// }
/// ```
#[macro_export]
macro_rules! dev_crit {
($($f:tt)*) => { $crate::dev_printk!(pr_crit, $($f)*); }
}
/// Prints an error-level message (level 3) prefixed with device information.
///
/// This level should be used in error conditions.
///
/// Equivalent to the kernel's `dev_err` macro.
///
/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
/// [`core::fmt`] and [`alloc::format!`].
///
/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
///
/// # Examples
///
/// ```
/// # use kernel::device::Device;
///
/// fn example(dev: &Device) {
/// dev_err!(dev, "hello {}\n", "there");
/// }
/// ```
#[macro_export]
macro_rules! dev_err {
($($f:tt)*) => { $crate::dev_printk!(pr_err, $($f)*); }
}
/// Prints a warning-level message (level 4) prefixed with device information.
///
/// This level should be used in warning conditions.
///
/// Equivalent to the kernel's `dev_warn` macro.
///
/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
/// [`core::fmt`] and [`alloc::format!`].
///
/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
///
/// # Examples
///
/// ```
/// # use kernel::device::Device;
///
/// fn example(dev: &Device) {
/// dev_warn!(dev, "hello {}\n", "there");
/// }
/// ```
#[macro_export]
macro_rules! dev_warn {
($($f:tt)*) => { $crate::dev_printk!(pr_warn, $($f)*); }
}
/// Prints a notice-level message (level 5) prefixed with device information.
///
/// This level should be used in normal but significant conditions.
///
/// Equivalent to the kernel's `dev_notice` macro.
///
/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
/// [`core::fmt`] and [`alloc::format!`].
///
/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
///
/// # Examples
///
/// ```
/// # use kernel::device::Device;
///
/// fn example(dev: &Device) {
/// dev_notice!(dev, "hello {}\n", "there");
/// }
/// ```
#[macro_export]
macro_rules! dev_notice {
($($f:tt)*) => { $crate::dev_printk!(pr_notice, $($f)*); }
}
/// Prints an info-level message (level 6) prefixed with device information.
///
/// This level should be used for informational messages.
///
/// Equivalent to the kernel's `dev_info` macro.
///
/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
/// [`core::fmt`] and [`alloc::format!`].
///
/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
///
/// # Examples
///
/// ```
/// # use kernel::device::Device;
///
/// fn example(dev: &Device) {
/// dev_info!(dev, "hello {}\n", "there");
/// }
/// ```
#[macro_export]
macro_rules! dev_info {
($($f:tt)*) => { $crate::dev_printk!(pr_info, $($f)*); }
}
/// Prints a debug-level message (level 7) prefixed with device information.
///
/// This level should be used for debug messages.
///
/// Equivalent to the kernel's `dev_dbg` macro, except that it doesn't support dynamic debug yet.
///
/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
/// [`core::fmt`] and [`alloc::format!`].
///
/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
///
/// # Examples
///
/// ```
/// # use kernel::device::Device;
///
/// fn example(dev: &Device) {
/// dev_dbg!(dev, "hello {}\n", "there");
/// }
/// ```
#[macro_export]
macro_rules! dev_dbg {
($($f:tt)*) => { $crate::dev_printk!(pr_dbg, $($f)*); }
}