pub struct String { /* private fields */ }
Expand description
A UTF-8–encoded, growable string.
The String
type is the most common string type that has ownership over the
contents of the string. It has a close relationship with its borrowed
counterpart, the primitive str
.
Examples
You can create a String
from a literal string with String::from
:
let hello = String::from("Hello, world!");
You can append a char
to a String
with the push
method, and
append a &str
with the push_str
method:
let mut hello = String::from("Hello, ");
hello.push('w');
hello.push_str("orld!");
If you have a vector of UTF-8 bytes, you can create a String
from it with
the from_utf8
method:
// some bytes, in a vector
let sparkle_heart = vec![240, 159, 146, 150];
// We know these bytes are valid, so we'll use `unwrap()`.
let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
assert_eq!("💖", sparkle_heart);
UTF-8
String
s are always valid UTF-8. If you need a non-UTF-8 string, consider
OsString
. It is similar, but without the UTF-8 constraint. Because UTF-8
is a variable width encoding, String
s are typically smaller than an array of
the same chars
:
use std::mem;
// `s` is ASCII which represents each `char` as one byte
let s = "hello";
assert_eq!(s.len(), 5);
// A `char` array with the same contents would be longer because
// every `char` is four bytes
let s = ['h', 'e', 'l', 'l', 'o'];
let size: usize = s.into_iter().map(|c| mem::size_of_val(&c)).sum();
assert_eq!(size, 20);
// However, for non-ASCII strings, the difference will be smaller
// and sometimes they are the same
let s = "💖💖💖💖💖";
assert_eq!(s.len(), 20);
let s = ['💖', '💖', '💖', '💖', '💖'];
let size: usize = s.into_iter().map(|c| mem::size_of_val(&c)).sum();
assert_eq!(size, 20);
This raises interesting questions as to how s[i]
should work.
What should i
be here? Several options include byte indices and
char
indices but, because of UTF-8 encoding, only byte indices
would provide constant time indexing. Getting the i
th char
, for
example, is available using chars
:
let s = "hello";
let third_character = s.chars().nth(2);
assert_eq!(third_character, Some('l'));
let s = "💖💖💖💖💖";
let third_character = s.chars().nth(2);
assert_eq!(third_character, Some('💖'));
Next, what should s[i]
return? Because indexing returns a reference
to underlying data it could be &u8
, &[u8]
, or something else similar.
Since we’re only providing one index, &u8
makes the most sense but that
might not be what the user expects and can be explicitly achieved with
as_bytes()
:
// The first byte is 104 - the byte value of `'h'`
let s = "hello";
assert_eq!(s.as_bytes()[0], 104);
// or
assert_eq!(s.as_bytes()[0], b'h');
// The first byte is 240 which isn't obviously useful
let s = "💖💖💖💖💖";
assert_eq!(s.as_bytes()[0], 240);
Due to these ambiguities/restrictions, indexing with a usize
is simply
forbidden:
let s = "hello";
// The following will not compile!
println!("The first letter of s is {}", s[0]);
It is more clear, however, how &s[i..j]
should work (that is,
indexing with a range). It should accept byte indices (to be constant-time)
and return a &str
which is UTF-8 encoded. This is also called “string slicing”.
Note this will panic if the byte indices provided are not character
boundaries - see is_char_boundary
for more details. See the implementations
for SliceIndex<str>
for more details on string slicing. For a non-panicking
version of string slicing, see get
.
The bytes
and chars
methods return iterators over the bytes and
codepoints of the string, respectively. To iterate over codepoints along
with byte indices, use char_indices
.
Deref
String
implements Deref<Target = str>
, and so inherits all of str
’s
methods. In addition, this means that you can pass a String
to a
function which takes a &str
by using an ampersand (&
):
fn takes_str(s: &str) { }
let s = String::from("Hello");
takes_str(&s);
This will create a &str
from the String
and pass it in. This
conversion is very inexpensive, and so generally, functions will accept
&str
s as arguments unless they need a String
for some specific
reason.
In certain cases Rust doesn’t have enough information to make this
conversion, known as Deref
coercion. In the following example a string
slice &'a str
implements the trait TraitExample
, and the function
example_func
takes anything that implements the trait. In this case Rust
would need to make two implicit conversions, which Rust doesn’t have the
means to do. For that reason, the following example will not compile.
trait TraitExample {}
impl<'a> TraitExample for &'a str {}
fn example_func<A: TraitExample>(example_arg: A) {}
let example_string = String::from("example_string");
example_func(&example_string);
There are two options that would work instead. The first would be to
change the line example_func(&example_string);
to
example_func(example_string.as_str());
, using the method as_str()
to explicitly extract the string slice containing the string. The second
way changes example_func(&example_string);
to
example_func(&*example_string);
. In this case we are dereferencing a
String
to a str
, then referencing the str
back to
&str
. The second way is more idiomatic, however both work to do the
conversion explicitly rather than relying on the implicit conversion.
Representation
A String
is made up of three components: a pointer to some bytes, a
length, and a capacity. The pointer points to an internal buffer String
uses to store its data. The length is the number of bytes currently stored
in the buffer, and the capacity is the size of the buffer in bytes. As such,
the length will always be less than or equal to the capacity.
This buffer is always stored on the heap.
You can look at these with the as_ptr
, len
, and capacity
methods:
use std::mem;
let story = String::from("Once upon a time...");
// Prevent automatically dropping the String's data
let mut story = mem::ManuallyDrop::new(story);
let ptr = story.as_mut_ptr();
let len = story.len();
let capacity = story.capacity();
// story has nineteen bytes
assert_eq!(19, len);
// We can re-build a String out of ptr, len, and capacity. This is all
// unsafe because we are responsible for making sure the components are
// valid:
let s = unsafe { String::from_raw_parts(ptr, len, capacity) } ;
assert_eq!(String::from("Once upon a time..."), s);
If a String
has enough capacity, adding elements to it will not
re-allocate. For example, consider this program:
let mut s = String::new();
println!("{}", s.capacity());
for _ in 0..5 {
s.push_str("hello");
println!("{}", s.capacity());
}
This will output the following:
0
5
10
20
20
40
At first, we have no memory allocated at all, but as we append to the
string, it increases its capacity appropriately. If we instead use the
with_capacity
method to allocate the correct capacity initially:
let mut s = String::with_capacity(25);
println!("{}", s.capacity());
for _ in 0..5 {
s.push_str("hello");
println!("{}", s.capacity());
}
We end up with a different output:
25
25
25
25
25
25
Here, there’s no need to allocate more memory inside the loop.
Implementations
sourceimpl String
impl String
const: 1.39.0 · sourcepub const fn new() -> String
pub const fn new() -> String
Creates a new empty String
.
Given that the String
is empty, this will not allocate any initial
buffer. While that means that this initial operation is very
inexpensive, it may cause excessive allocation later when you add
data. If you have an idea of how much data the String
will hold,
consider the with_capacity
method to prevent excessive
re-allocation.
Examples
Basic usage:
let s = String::new();
sourcepub fn from_utf8(vec: Vec<u8, Global>) -> Result<String, FromUtf8Error>
pub fn from_utf8(vec: Vec<u8, Global>) -> Result<String, FromUtf8Error>
Converts a vector of bytes to a String
.
A string (String
) is made of bytes (u8
), and a vector of bytes
(Vec<u8>
) is made of bytes, so this function converts between the
two. Not all byte slices are valid String
s, however: String
requires that it is valid UTF-8. from_utf8()
checks to ensure that
the bytes are valid UTF-8, and then does the conversion.
If you are sure that the byte slice is valid UTF-8, and you don’t want
to incur the overhead of the validity check, there is an unsafe version
of this function, from_utf8_unchecked
, which has the same behavior
but skips the check.
This method will take care to not copy the vector, for efficiency’s sake.
If you need a &str
instead of a String
, consider
str::from_utf8
.
The inverse of this method is into_bytes
.
Errors
Returns Err
if the slice is not UTF-8 with a description as to why the
provided bytes are not UTF-8. The vector you moved in is also included.
Examples
Basic usage:
// some bytes, in a vector
let sparkle_heart = vec![240, 159, 146, 150];
// We know these bytes are valid, so we'll use `unwrap()`.
let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
assert_eq!("💖", sparkle_heart);
Incorrect bytes:
// some invalid bytes, in a vector
let sparkle_heart = vec![0, 159, 146, 150];
assert!(String::from_utf8(sparkle_heart).is_err());
See the docs for FromUtf8Error
for more details on what you can do
with this error.
sourcepub fn into_raw_parts(self) -> (*mut u8, usize, usize)
🔬 This is a nightly-only experimental API. (vec_into_raw_parts
)
pub fn into_raw_parts(self) -> (*mut u8, usize, usize)
vec_into_raw_parts
)Decomposes a String
into its raw components.
Returns the raw pointer to the underlying data, the length of
the string (in bytes), and the allocated capacity of the data
(in bytes). These are the same arguments in the same order as
the arguments to from_raw_parts
.
After calling this function, the caller is responsible for the
memory previously managed by the String
. The only way to do
this is to convert the raw pointer, length, and capacity back
into a String
with the from_raw_parts
function, allowing
the destructor to perform the cleanup.
Examples
#![feature(vec_into_raw_parts)]
let s = String::from("hello");
let (ptr, len, cap) = s.into_raw_parts();
let rebuilt = unsafe { String::from_raw_parts(ptr, len, cap) };
assert_eq!(rebuilt, "hello");
sourcepub unsafe fn from_raw_parts(
buf: *mut u8,
length: usize,
capacity: usize
) -> String
pub unsafe fn from_raw_parts(
buf: *mut u8,
length: usize,
capacity: usize
) -> String
Creates a new String
from a length, capacity, and pointer.
Safety
This is highly unsafe, due to the number of invariants that aren’t checked:
- The memory at
buf
needs to have been previously allocated by the same allocator the standard library uses, with a required alignment of exactly 1. length
needs to be less than or equal tocapacity
.capacity
needs to be the correct value.- The first
length
bytes atbuf
need to be valid UTF-8.
Violating these may cause problems like corrupting the allocator’s
internal data structures. For example, it is normally not safe to
build a String
from a pointer to a C char
array containing UTF-8
unless you are certain that array was originally allocated by the
Rust standard library’s allocator.
The ownership of buf
is effectively transferred to the
String
which may then deallocate, reallocate or change the
contents of memory pointed to by the pointer at will. Ensure
that nothing else uses the pointer after calling this
function.
Examples
Basic usage:
use std::mem;
unsafe {
let s = String::from("hello");
// Prevent automatically dropping the String's data
let mut s = mem::ManuallyDrop::new(s);
let ptr = s.as_mut_ptr();
let len = s.len();
let capacity = s.capacity();
let s = String::from_raw_parts(ptr, len, capacity);
assert_eq!(String::from("hello"), s);
}
sourcepub unsafe fn from_utf8_unchecked(bytes: Vec<u8, Global>) -> String
pub unsafe fn from_utf8_unchecked(bytes: Vec<u8, Global>) -> String
Converts a vector of bytes to a String
without checking that the
string contains valid UTF-8.
See the safe version, from_utf8
, for more details.
Safety
This function is unsafe because it does not check that the bytes passed
to it are valid UTF-8. If this constraint is violated, it may cause
memory unsafety issues with future users of the String
, as the rest of
the standard library assumes that String
s are valid UTF-8.
Examples
Basic usage:
// some bytes, in a vector
let sparkle_heart = vec![240, 159, 146, 150];
let sparkle_heart = unsafe {
String::from_utf8_unchecked(sparkle_heart)
};
assert_eq!("💖", sparkle_heart);
sourcepub fn into_bytes(self) -> Vec<u8, Global>
pub fn into_bytes(self) -> Vec<u8, Global>
Converts a String
into a byte vector.
This consumes the String
, so we do not need to copy its contents.
Examples
Basic usage:
let s = String::from("hello");
let bytes = s.into_bytes();
assert_eq!(&[104, 101, 108, 108, 111][..], &bytes[..]);
1.7.0 · sourcepub fn as_str(&self) -> &str
pub fn as_str(&self) -> &str
Extracts a string slice containing the entire String
.
Examples
Basic usage:
let s = String::from("foo");
assert_eq!("foo", s.as_str());
1.7.0 · sourcepub fn as_mut_str(&mut self) -> &mut str
pub fn as_mut_str(&mut self) -> &mut str
Converts a String
into a mutable string slice.
Examples
Basic usage:
let mut s = String::from("foobar");
let s_mut_str = s.as_mut_str();
s_mut_str.make_ascii_uppercase();
assert_eq!("FOOBAR", s_mut_str);
sourcepub fn capacity(&self) -> usize
pub fn capacity(&self) -> usize
Returns this String
’s capacity, in bytes.
Examples
Basic usage:
let s = String::with_capacity(10);
assert!(s.capacity() >= 10);
1.57.0 · sourcepub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError>
pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError>
Tries to reserve capacity for at least additional
more elements to be inserted
in the given String
. The collection may reserve more space to avoid
frequent reallocations. After calling reserve
, capacity will be
greater than or equal to self.len() + additional
. Does nothing if
capacity is already sufficient.
Errors
If the capacity overflows, or the allocator reports a failure, then an error is returned.
Examples
use std::collections::TryReserveError;
fn process_data(data: &str) -> Result<String, TryReserveError> {
let mut output = String::new();
// Pre-reserve the memory, exiting if we can't
output.try_reserve(data.len())?;
// Now we know this can't OOM in the middle of our complex work
output.push_str(data);
Ok(output)
}
1.57.0 · sourcepub fn try_reserve_exact(
&mut self,
additional: usize
) -> Result<(), TryReserveError>
pub fn try_reserve_exact(
&mut self,
additional: usize
) -> Result<(), TryReserveError>
Tries to reserve the minimum capacity for exactly additional
more elements to
be inserted in the given String
. After calling try_reserve_exact
,
capacity will be greater than or equal to self.len() + additional
.
Does nothing if the capacity is already sufficient.
Note that the allocator may give the collection more space than it
requests. Therefore, capacity can not be relied upon to be precisely
minimal. Prefer try_reserve
if future insertions are expected.
Errors
If the capacity overflows, or the allocator reports a failure, then an error is returned.
Examples
use std::collections::TryReserveError;
fn process_data(data: &str) -> Result<String, TryReserveError> {
let mut output = String::new();
// Pre-reserve the memory, exiting if we can't
output.try_reserve_exact(data.len())?;
// Now we know this can't OOM in the middle of our complex work
output.push_str(data);
Ok(output)
}
sourcepub fn truncate(&mut self, new_len: usize)
pub fn truncate(&mut self, new_len: usize)
Shortens this String
to the specified length.
If new_len
is greater than the string’s current length, this has no
effect.
Note that this method has no effect on the allocated capacity of the string
Panics
Panics if new_len
does not lie on a char
boundary.
Examples
Basic usage:
let mut s = String::from("hello");
s.truncate(2);
assert_eq!("he", s);
sourcepub fn remove(&mut self, idx: usize) -> char
pub fn remove(&mut self, idx: usize) -> char
Removes a char
from this String
at a byte position and returns it.
This is an O(n) operation, as it requires copying every element in the buffer.
Panics
Panics if idx
is larger than or equal to the String
’s length,
or if it does not lie on a char
boundary.
Examples
Basic usage:
let mut s = String::from("foo");
assert_eq!(s.remove(0), 'f');
assert_eq!(s.remove(1), 'o');
assert_eq!(s.remove(0), 'o');
1.26.0 · sourcepub fn retain<F>(&mut self, f: F) where
F: FnMut(char) -> bool,
pub fn retain<F>(&mut self, f: F) where
F: FnMut(char) -> bool,
Retains only the characters specified by the predicate.
In other words, remove all characters c
such that f(c)
returns false
.
This method operates in place, visiting each character exactly once in the
original order, and preserves the order of the retained characters.
Examples
let mut s = String::from("f_o_ob_ar");
s.retain(|c| c != '_');
assert_eq!(s, "foobar");
Because the elements are visited exactly once in the original order, external state may be used to decide which elements to keep.
let mut s = String::from("abcde");
let keep = [false, true, true, false, true];
let mut iter = keep.iter();
s.retain(|_| *iter.next().unwrap());
assert_eq!(s, "bce");
sourcepub unsafe fn as_mut_vec(&mut self) -> &mut Vec<u8, Global>
pub unsafe fn as_mut_vec(&mut self) -> &mut Vec<u8, Global>
Returns a mutable reference to the contents of this String
.
Safety
This function is unsafe because the returned &mut Vec
allows writing
bytes which are not valid UTF-8. If this constraint is violated, using
the original String
after dropping the &mut Vec
may violate memory
safety, as the rest of the standard library assumes that String
s are
valid UTF-8.
Examples
Basic usage:
let mut s = String::from("hello");
unsafe {
let vec = s.as_mut_vec();
assert_eq!(&[104, 101, 108, 108, 111][..], &vec[..]);
vec.reverse();
}
assert_eq!(s, "olleh");
sourcepub fn len(&self) -> usize
pub fn len(&self) -> usize
Returns the length of this String
, in bytes, not char
s or
graphemes. In other words, it might not be what a human considers the
length of the string.
Examples
Basic usage:
let a = String::from("foo");
assert_eq!(a.len(), 3);
let fancy_f = String::from("ƒoo");
assert_eq!(fancy_f.len(), 4);
assert_eq!(fancy_f.chars().count(), 3);
sourcepub fn is_empty(&self) -> bool
pub fn is_empty(&self) -> bool
Returns true
if this String
has a length of zero, and false
otherwise.
Examples
Basic usage:
let mut v = String::new();
assert!(v.is_empty());
v.push('a');
assert!(!v.is_empty());
sourcepub fn clear(&mut self)
pub fn clear(&mut self)
Truncates this String
, removing all contents.
While this means the String
will have a length of zero, it does not
touch its capacity.
Examples
Basic usage:
let mut s = String::from("foo");
s.clear();
assert!(s.is_empty());
assert_eq!(0, s.len());
assert_eq!(3, s.capacity());
1.6.0 · sourcepub fn drain<R>(&mut self, range: R) -> Drain<'_> where
R: RangeBounds<usize>,
pub fn drain<R>(&mut self, range: R) -> Drain<'_> where
R: RangeBounds<usize>,
Removes the specified range from the string in bulk, returning all removed characters as an iterator.
The returned iterator keeps a mutable borrow on the string to optimize its implementation.
Panics
Panics if the starting point or end point do not lie on a char
boundary, or if they’re out of bounds.
Leaking
If the returned iterator goes out of scope without being dropped (due to
core::mem::forget
, for example), the string may still contain a copy
of any drained characters, or may have lost characters arbitrarily,
including characters outside the range.
Examples
Basic usage:
let mut s = String::from("α is alpha, β is beta");
let beta_offset = s.find('β').unwrap_or(s.len());
// Remove the range up until the β from the string
let t: String = s.drain(..beta_offset).collect();
assert_eq!(t, "α is alpha, ");
assert_eq!(s, "β is beta");
// A full range clears the string, like `clear()` does
s.drain(..);
assert_eq!(s, "");
Methods from Deref<Target = str>
sourcepub fn len(&self) -> usize
pub fn len(&self) -> usize
Returns the length of self
.
This length is in bytes, not char
s or graphemes. In other words,
it might not be what a human considers the length of the string.
Examples
Basic usage:
let len = "foo".len();
assert_eq!(3, len);
assert_eq!("ƒoo".len(), 4); // fancy f!
assert_eq!("ƒoo".chars().count(), 3);
sourcepub fn is_empty(&self) -> bool
pub fn is_empty(&self) -> bool
Returns true
if self
has a length of zero bytes.
Examples
Basic usage:
let s = "";
assert!(s.is_empty());
let s = "not empty";
assert!(!s.is_empty());
1.9.0 · sourcepub fn is_char_boundary(&self, index: usize) -> bool
pub fn is_char_boundary(&self, index: usize) -> bool
Checks that index
-th byte is the first byte in a UTF-8 code point
sequence or the end of the string.
The start and end of the string (when index == self.len()
) are
considered to be boundaries.
Returns false
if index
is greater than self.len()
.
Examples
let s = "Löwe 老虎 Léopard";
assert!(s.is_char_boundary(0));
// start of `老`
assert!(s.is_char_boundary(6));
assert!(s.is_char_boundary(s.len()));
// second byte of `ö`
assert!(!s.is_char_boundary(2));
// third byte of `老`
assert!(!s.is_char_boundary(8));
sourcepub fn floor_char_boundary(&self, index: usize) -> usize
🔬 This is a nightly-only experimental API. (round_char_boundary
)
pub fn floor_char_boundary(&self, index: usize) -> usize
round_char_boundary
)Finds the closest x
not exceeding index
where is_char_boundary(x)
is true
.
This method can help you truncate a string so that it’s still valid UTF-8, but doesn’t exceed a given number of bytes. Note that this is done purely at the character level and can still visually split graphemes, even though the underlying characters aren’t split. For example, the emoji 🧑🔬 (scientist) could be split so that the string only includes 🧑 (person) instead.
Examples
#![feature(round_char_boundary)]
let s = "❤️🧡💛💚💙💜";
assert_eq!(s.len(), 26);
assert!(!s.is_char_boundary(13));
let closest = s.floor_char_boundary(13);
assert_eq!(closest, 10);
assert_eq!(&s[..closest], "❤️🧡");
sourcepub fn ceil_char_boundary(&self, index: usize) -> usize
🔬 This is a nightly-only experimental API. (round_char_boundary
)
pub fn ceil_char_boundary(&self, index: usize) -> usize
round_char_boundary
)Finds the closest x
not below index
where is_char_boundary(x)
is true
.
This method is the natural complement to floor_char_boundary
. See that method
for more details.
Panics
Panics if index > self.len()
.
Examples
#![feature(round_char_boundary)]
let s = "❤️🧡💛💚💙💜";
assert_eq!(s.len(), 26);
assert!(!s.is_char_boundary(13));
let closest = s.ceil_char_boundary(13);
assert_eq!(closest, 14);
assert_eq!(&s[..closest], "❤️🧡💛");
1.20.0 · sourcepub unsafe fn as_bytes_mut(&mut self) -> &mut [u8]
pub unsafe fn as_bytes_mut(&mut self) -> &mut [u8]
Converts a mutable string slice to a mutable byte slice.
Safety
The caller must ensure that the content of the slice is valid UTF-8
before the borrow ends and the underlying str
is used.
Use of a str
whose contents are not valid UTF-8 is undefined behavior.
Examples
Basic usage:
let mut s = String::from("Hello");
let bytes = unsafe { s.as_bytes_mut() };
assert_eq!(b"Hello", bytes);
Mutability:
let mut s = String::from("🗻∈🌏");
unsafe {
let bytes = s.as_bytes_mut();
bytes[0] = 0xF0;
bytes[1] = 0x9F;
bytes[2] = 0x8D;
bytes[3] = 0x94;
}
assert_eq!("🍔∈🌏", s);
sourcepub fn as_ptr(&self) -> *const u8
pub fn as_ptr(&self) -> *const u8
Converts a string slice to a raw pointer.
As string slices are a slice of bytes, the raw pointer points to a
u8
. This pointer will be pointing to the first byte of the string
slice.
The caller must ensure that the returned pointer is never written to.
If you need to mutate the contents of the string slice, use as_mut_ptr
.
Examples
Basic usage:
let s = "Hello";
let ptr = s.as_ptr();
1.36.0 · sourcepub fn as_mut_ptr(&mut self) -> *mut u8
pub fn as_mut_ptr(&mut self) -> *mut u8
Converts a mutable string slice to a raw pointer.
As string slices are a slice of bytes, the raw pointer points to a
u8
. This pointer will be pointing to the first byte of the string
slice.
It is your responsibility to make sure that the string slice only gets modified in a way that it remains valid UTF-8.
1.20.0 · sourcepub fn get<I>(&self, i: I) -> Option<&<I as SliceIndex<str>>::Output> where
I: SliceIndex<str>,
pub fn get<I>(&self, i: I) -> Option<&<I as SliceIndex<str>>::Output> where
I: SliceIndex<str>,
Returns a subslice of str
.
This is the non-panicking alternative to indexing the str
. Returns
None
whenever equivalent indexing operation would panic.
Examples
let v = String::from("🗻∈🌏");
assert_eq!(Some("🗻"), v.get(0..4));
// indices not on UTF-8 sequence boundaries
assert!(v.get(1..).is_none());
assert!(v.get(..8).is_none());
// out of bounds
assert!(v.get(..42).is_none());
1.20.0 · sourcepub fn get_mut<I>(
&mut self,
i: I
) -> Option<&mut <I as SliceIndex<str>>::Output> where
I: SliceIndex<str>,
pub fn get_mut<I>(
&mut self,
i: I
) -> Option<&mut <I as SliceIndex<str>>::Output> where
I: SliceIndex<str>,
Returns a mutable subslice of str
.
This is the non-panicking alternative to indexing the str
. Returns
None
whenever equivalent indexing operation would panic.
Examples
let mut v = String::from("hello");
// correct length
assert!(v.get_mut(0..5).is_some());
// out of bounds
assert!(v.get_mut(..42).is_none());
assert_eq!(Some("he"), v.get_mut(0..2).map(|v| &*v));
assert_eq!("hello", v);
{
let s = v.get_mut(0..2);
let s = s.map(|s| {
s.make_ascii_uppercase();
&*s
});
assert_eq!(Some("HE"), s);
}
assert_eq!("HEllo", v);
1.20.0 · sourcepub unsafe fn get_unchecked<I>(&self, i: I) -> &<I as SliceIndex<str>>::Output where
I: SliceIndex<str>,
pub unsafe fn get_unchecked<I>(&self, i: I) -> &<I as SliceIndex<str>>::Output where
I: SliceIndex<str>,
Returns an unchecked subslice of str
.
This is the unchecked alternative to indexing the str
.
Safety
Callers of this function are responsible that these preconditions are satisfied:
- The starting index must not exceed the ending index;
- Indexes must be within bounds of the original slice;
- Indexes must lie on UTF-8 sequence boundaries.
Failing that, the returned string slice may reference invalid memory or
violate the invariants communicated by the str
type.
Examples
let v = "🗻∈🌏";
unsafe {
assert_eq!("🗻", v.get_unchecked(0..4));
assert_eq!("∈", v.get_unchecked(4..7));
assert_eq!("🌏", v.get_unchecked(7..11));
}
1.20.0 · sourcepub unsafe fn get_unchecked_mut<I>(
&mut self,
i: I
) -> &mut <I as SliceIndex<str>>::Output where
I: SliceIndex<str>,
pub unsafe fn get_unchecked_mut<I>(
&mut self,
i: I
) -> &mut <I as SliceIndex<str>>::Output where
I: SliceIndex<str>,
Returns a mutable, unchecked subslice of str
.
This is the unchecked alternative to indexing the str
.
Safety
Callers of this function are responsible that these preconditions are satisfied:
- The starting index must not exceed the ending index;
- Indexes must be within bounds of the original slice;
- Indexes must lie on UTF-8 sequence boundaries.
Failing that, the returned string slice may reference invalid memory or
violate the invariants communicated by the str
type.
Examples
let mut v = String::from("🗻∈🌏");
unsafe {
assert_eq!("🗻", v.get_unchecked_mut(0..4));
assert_eq!("∈", v.get_unchecked_mut(4..7));
assert_eq!("🌏", v.get_unchecked_mut(7..11));
}
sourcepub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str
👎 Deprecated since 1.29.0: use get_unchecked(begin..end)
instead
pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str
use get_unchecked(begin..end)
instead
Creates a string slice from another string slice, bypassing safety checks.
This is generally not recommended, use with caution! For a safe
alternative see str
and Index
.
This new slice goes from begin
to end
, including begin
but
excluding end
.
To get a mutable string slice instead, see the
slice_mut_unchecked
method.
Safety
Callers of this function are responsible that three preconditions are satisfied:
begin
must not exceedend
.begin
andend
must be byte positions within the string slice.begin
andend
must lie on UTF-8 sequence boundaries.
Examples
Basic usage:
let s = "Löwe 老虎 Léopard";
unsafe {
assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21));
}
let s = "Hello, world!";
unsafe {
assert_eq!("world", s.slice_unchecked(7, 12));
}
1.5.0 · sourcepub unsafe fn slice_mut_unchecked(
&mut self,
begin: usize,
end: usize
) -> &mut str
👎 Deprecated since 1.29.0: use get_unchecked_mut(begin..end)
instead
pub unsafe fn slice_mut_unchecked(
&mut self,
begin: usize,
end: usize
) -> &mut str
use get_unchecked_mut(begin..end)
instead
Creates a string slice from another string slice, bypassing safety
checks.
This is generally not recommended, use with caution! For a safe
alternative see str
and IndexMut
.
This new slice goes from begin
to end
, including begin
but
excluding end
.
To get an immutable string slice instead, see the
slice_unchecked
method.
Safety
Callers of this function are responsible that three preconditions are satisfied:
begin
must not exceedend
.begin
andend
must be byte positions within the string slice.begin
andend
must lie on UTF-8 sequence boundaries.
1.4.0 · sourcepub fn split_at(&self, mid: usize) -> (&str, &str)
pub fn split_at(&self, mid: usize) -> (&str, &str)
Divide one string slice into two at an index.
The argument, mid
, should be a byte offset from the start of the
string. It must also be on the boundary of a UTF-8 code point.
The two slices returned go from the start of the string slice to mid
,
and from mid
to the end of the string slice.
To get mutable string slices instead, see the split_at_mut
method.
Panics
Panics if mid
is not on a UTF-8 code point boundary, or if it is
past the end of the last code point of the string slice.
Examples
Basic usage:
let s = "Per Martin-Löf";
let (first, last) = s.split_at(3);
assert_eq!("Per", first);
assert_eq!(" Martin-Löf", last);
1.4.0 · sourcepub fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str)
pub fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str)
Divide one mutable string slice into two at an index.
The argument, mid
, should be a byte offset from the start of the
string. It must also be on the boundary of a UTF-8 code point.
The two slices returned go from the start of the string slice to mid
,
and from mid
to the end of the string slice.
To get immutable string slices instead, see the split_at
method.
Panics
Panics if mid
is not on a UTF-8 code point boundary, or if it is
past the end of the last code point of the string slice.
Examples
Basic usage:
let mut s = "Per Martin-Löf".to_string();
{
let (first, last) = s.split_at_mut(3);
first.make_ascii_uppercase();
assert_eq!("PER", first);
assert_eq!(" Martin-Löf", last);
}
assert_eq!("PER Martin-Löf", s);
sourcepub fn chars(&self) -> Chars<'_>
pub fn chars(&self) -> Chars<'_>
Returns an iterator over the char
s of a string slice.
As a string slice consists of valid UTF-8, we can iterate through a
string slice by char
. This method returns such an iterator.
It’s important to remember that char
represents a Unicode Scalar
Value, and might not match your idea of what a ‘character’ is. Iteration
over grapheme clusters may be what you actually want. This functionality
is not provided by Rust’s standard library, check crates.io instead.
Examples
Basic usage:
let word = "goodbye";
let count = word.chars().count();
assert_eq!(7, count);
let mut chars = word.chars();
assert_eq!(Some('g'), chars.next());
assert_eq!(Some('o'), chars.next());
assert_eq!(Some('o'), chars.next());
assert_eq!(Some('d'), chars.next());
assert_eq!(Some('b'), chars.next());
assert_eq!(Some('y'), chars.next());
assert_eq!(Some('e'), chars.next());
assert_eq!(None, chars.next());
Remember, char
s might not match your intuition about characters:
let y = "y̆";
let mut chars = y.chars();
assert_eq!(Some('y'), chars.next()); // not 'y̆'
assert_eq!(Some('\u{0306}'), chars.next());
assert_eq!(None, chars.next());
sourcepub fn char_indices(&self) -> CharIndices<'_>
pub fn char_indices(&self) -> CharIndices<'_>
Returns an iterator over the char
s of a string slice, and their
positions.
As a string slice consists of valid UTF-8, we can iterate through a
string slice by char
. This method returns an iterator of both
these char
s, as well as their byte positions.
The iterator yields tuples. The position is first, the char
is
second.
Examples
Basic usage:
let word = "goodbye";
let count = word.char_indices().count();
assert_eq!(7, count);
let mut char_indices = word.char_indices();
assert_eq!(Some((0, 'g')), char_indices.next());
assert_eq!(Some((1, 'o')), char_indices.next());
assert_eq!(Some((2, 'o')), char_indices.next());
assert_eq!(Some((3, 'd')), char_indices.next());
assert_eq!(Some((4, 'b')), char_indices.next());
assert_eq!(Some((5, 'y')), char_indices.next());
assert_eq!(Some((6, 'e')), char_indices.next());
assert_eq!(None, char_indices.next());
Remember, char
s might not match your intuition about characters:
let yes = "y̆es";
let mut char_indices = yes.char_indices();
assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆')
assert_eq!(Some((1, '\u{0306}')), char_indices.next());
// note the 3 here - the last character took up two bytes
assert_eq!(Some((3, 'e')), char_indices.next());
assert_eq!(Some((4, 's')), char_indices.next());
assert_eq!(None, char_indices.next());
sourcepub fn bytes(&self) -> Bytes<'_>
pub fn bytes(&self) -> Bytes<'_>
An iterator over the bytes of a string slice.
As a string slice consists of a sequence of bytes, we can iterate through a string slice by byte. This method returns such an iterator.
Examples
Basic usage:
let mut bytes = "bors".bytes();
assert_eq!(Some(b'b'), bytes.next());
assert_eq!(Some(b'o'), bytes.next());
assert_eq!(Some(b'r'), bytes.next());
assert_eq!(Some(b's'), bytes.next());
assert_eq!(None, bytes.next());
1.1.0 · sourcepub fn split_whitespace(&self) -> SplitWhitespace<'_>
pub fn split_whitespace(&self) -> SplitWhitespace<'_>
Splits a string slice by whitespace.
The iterator returned will return string slices that are sub-slices of the original string slice, separated by any amount of whitespace.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space
. If you only want to split on ASCII whitespace
instead, use split_ascii_whitespace
.
Examples
Basic usage:
let mut iter = "A few words".split_whitespace();
assert_eq!(Some("A"), iter.next());
assert_eq!(Some("few"), iter.next());
assert_eq!(Some("words"), iter.next());
assert_eq!(None, iter.next());
All kinds of whitespace are considered:
let mut iter = " Mary had\ta\u{2009}little \n\t lamb".split_whitespace();
assert_eq!(Some("Mary"), iter.next());
assert_eq!(Some("had"), iter.next());
assert_eq!(Some("a"), iter.next());
assert_eq!(Some("little"), iter.next());
assert_eq!(Some("lamb"), iter.next());
assert_eq!(None, iter.next());
1.34.0 · sourcepub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_>
pub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_>
Splits a string slice by ASCII whitespace.
The iterator returned will return string slices that are sub-slices of the original string slice, separated by any amount of ASCII whitespace.
To split by Unicode Whitespace
instead, use split_whitespace
.
Examples
Basic usage:
let mut iter = "A few words".split_ascii_whitespace();
assert_eq!(Some("A"), iter.next());
assert_eq!(Some("few"), iter.next());
assert_eq!(Some("words"), iter.next());
assert_eq!(None, iter.next());
All kinds of ASCII whitespace are considered:
let mut iter = " Mary had\ta little \n\t lamb".split_ascii_whitespace();
assert_eq!(Some("Mary"), iter.next());
assert_eq!(Some("had"), iter.next());
assert_eq!(Some("a"), iter.next());
assert_eq!(Some("little"), iter.next());
assert_eq!(Some("lamb"), iter.next());
assert_eq!(None, iter.next());
sourcepub fn lines(&self) -> Lines<'_>
pub fn lines(&self) -> Lines<'_>
An iterator over the lines of a string, as string slices.
Lines are ended with either a newline (\n
) or a carriage return with
a line feed (\r\n
).
The final line ending is optional. A string that ends with a final line ending will return the same lines as an otherwise identical string without a final line ending.
Examples
Basic usage:
let text = "foo\r\nbar\n\nbaz\n";
let mut lines = text.lines();
assert_eq!(Some("foo"), lines.next());
assert_eq!(Some("bar"), lines.next());
assert_eq!(Some(""), lines.next());
assert_eq!(Some("baz"), lines.next());
assert_eq!(None, lines.next());
The final line ending isn’t required:
let text = "foo\nbar\n\r\nbaz";
let mut lines = text.lines();
assert_eq!(Some("foo"), lines.next());
assert_eq!(Some("bar"), lines.next());
assert_eq!(Some(""), lines.next());
assert_eq!(Some("baz"), lines.next());
assert_eq!(None, lines.next());
sourcepub fn lines_any(&self) -> LinesAny<'_>
👎 Deprecated since 1.4.0: use lines() instead now
pub fn lines_any(&self) -> LinesAny<'_>
use lines() instead now
An iterator over the lines of a string.
1.8.0 · sourcepub fn encode_utf16(&self) -> EncodeUtf16<'_>
pub fn encode_utf16(&self) -> EncodeUtf16<'_>
Returns an iterator of u16
over the string encoded as UTF-16.
Examples
Basic usage:
let text = "Zażółć gęślą jaźń";
let utf8_len = text.len();
let utf16_len = text.encode_utf16().count();
assert!(utf16_len <= utf8_len);
sourcepub fn contains<'a, P>(&'a self, pat: P) -> bool where
P: Pattern<'a>,
pub fn contains<'a, P>(&'a self, pat: P) -> bool where
P: Pattern<'a>,
Returns true
if the given pattern matches a sub-slice of
this string slice.
Returns false
if it does not.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Examples
Basic usage:
let bananas = "bananas";
assert!(bananas.contains("nana"));
assert!(!bananas.contains("apples"));
sourcepub fn starts_with<'a, P>(&'a self, pat: P) -> bool where
P: Pattern<'a>,
pub fn starts_with<'a, P>(&'a self, pat: P) -> bool where
P: Pattern<'a>,
Returns true
if the given pattern matches a prefix of this
string slice.
Returns false
if it does not.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Examples
Basic usage:
let bananas = "bananas";
assert!(bananas.starts_with("bana"));
assert!(!bananas.starts_with("nana"));
sourcepub fn ends_with<'a, P>(&'a self, pat: P) -> bool where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
pub fn ends_with<'a, P>(&'a self, pat: P) -> bool where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
Returns true
if the given pattern matches a suffix of this
string slice.
Returns false
if it does not.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Examples
Basic usage:
let bananas = "bananas";
assert!(bananas.ends_with("anas"));
assert!(!bananas.ends_with("nana"));
sourcepub fn find<'a, P>(&'a self, pat: P) -> Option<usize> where
P: Pattern<'a>,
pub fn find<'a, P>(&'a self, pat: P) -> Option<usize> where
P: Pattern<'a>,
Returns the byte index of the first character of this string slice that matches the pattern.
Returns None
if the pattern doesn’t match.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Examples
Simple patterns:
let s = "Löwe 老虎 Léopard Gepardi";
assert_eq!(s.find('L'), Some(0));
assert_eq!(s.find('é'), Some(14));
assert_eq!(s.find("pard"), Some(17));
More complex patterns using point-free style and closures:
let s = "Löwe 老虎 Léopard";
assert_eq!(s.find(char::is_whitespace), Some(5));
assert_eq!(s.find(char::is_lowercase), Some(1));
assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1));
assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4));
Not finding the pattern:
let s = "Löwe 老虎 Léopard";
let x: &[_] = &['1', '2'];
assert_eq!(s.find(x), None);
sourcepub fn rfind<'a, P>(&'a self, pat: P) -> Option<usize> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
pub fn rfind<'a, P>(&'a self, pat: P) -> Option<usize> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
Returns the byte index for the first character of the rightmost match of the pattern in this string slice.
Returns None
if the pattern doesn’t match.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Examples
Simple patterns:
let s = "Löwe 老虎 Léopard Gepardi";
assert_eq!(s.rfind('L'), Some(13));
assert_eq!(s.rfind('é'), Some(14));
assert_eq!(s.rfind("pard"), Some(24));
More complex patterns with closures:
let s = "Löwe 老虎 Léopard";
assert_eq!(s.rfind(char::is_whitespace), Some(12));
assert_eq!(s.rfind(char::is_lowercase), Some(20));
Not finding the pattern:
let s = "Löwe 老虎 Léopard";
let x: &[_] = &['1', '2'];
assert_eq!(s.rfind(x), None);
sourcepub fn split<'a, P>(&'a self, pat: P) -> Split<'a, P> where
P: Pattern<'a>,
pub fn split<'a, P>(&'a self, pat: P) -> Split<'a, P> where
P: Pattern<'a>,
An iterator over substrings of this string slice, separated by characters matched by a pattern.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Iterator behavior
The returned iterator will be a DoubleEndedIterator
if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, e.g., char
, but not for &str
.
If the pattern allows a reverse search but its results might differ
from a forward search, the rsplit
method can be used.
Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lamb".split(' ').collect();
assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]);
let v: Vec<&str> = "".split('X').collect();
assert_eq!(v, [""]);
let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect();
assert_eq!(v, ["lion", "", "tiger", "leopard"]);
let v: Vec<&str> = "lion::tiger::leopard".split("::").collect();
assert_eq!(v, ["lion", "tiger", "leopard"]);
let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect();
assert_eq!(v, ["abc", "def", "ghi"]);
let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect();
assert_eq!(v, ["lion", "tiger", "leopard"]);
If the pattern is a slice of chars, split on each occurrence of any of the characters:
let v: Vec<&str> = "2020-11-03 23:59".split(&['-', ' ', ':', '@'][..]).collect();
assert_eq!(v, ["2020", "11", "03", "23", "59"]);
A more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect();
assert_eq!(v, ["abc", "def", "ghi"]);
If a string contains multiple contiguous separators, you will end up with empty strings in the output:
let x = "||||a||b|c".to_string();
let d: Vec<_> = x.split('|').collect();
assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
Contiguous separators are separated by the empty string.
let x = "(///)".to_string();
let d: Vec<_> = x.split('/').collect();
assert_eq!(d, &["(", "", "", ")"]);
Separators at the start or end of a string are neighbored by empty strings.
let d: Vec<_> = "010".split("0").collect();
assert_eq!(d, &["", "1", ""]);
When the empty string is used as a separator, it separates every character in the string, along with the beginning and end of the string.
let f: Vec<_> = "rust".split("").collect();
assert_eq!(f, &["", "r", "u", "s", "t", ""]);
Contiguous separators can lead to possibly surprising behavior when whitespace is used as the separator. This code is correct:
let x = " a b c".to_string();
let d: Vec<_> = x.split(' ').collect();
assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
It does not give you:
assert_eq!(d, &["a", "b", "c"]);
Use split_whitespace
for this behavior.
1.51.0 · sourcepub fn split_inclusive<'a, P>(&'a self, pat: P) -> SplitInclusive<'a, P> where
P: Pattern<'a>,
pub fn split_inclusive<'a, P>(&'a self, pat: P) -> SplitInclusive<'a, P> where
P: Pattern<'a>,
An iterator over substrings of this string slice, separated by
characters matched by a pattern. Differs from the iterator produced by
split
in that split_inclusive
leaves the matched part as the
terminator of the substring.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Examples
let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb."
.split_inclusive('\n').collect();
assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb."]);
If the last element of the string is matched, that element will be considered the terminator of the preceding substring. That substring will be the last item returned by the iterator.
let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb.\n"
.split_inclusive('\n').collect();
assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb.\n"]);
sourcepub fn rsplit<'a, P>(&'a self, pat: P) -> RSplit<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
pub fn rsplit<'a, P>(&'a self, pat: P) -> RSplit<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
An iterator over substrings of the given string slice, separated by characters matched by a pattern and yielded in reverse order.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Iterator behavior
The returned iterator requires that the pattern supports a reverse
search, and it will be a DoubleEndedIterator
if a forward/reverse
search yields the same elements.
For iterating from the front, the split
method can be used.
Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect();
assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]);
let v: Vec<&str> = "".rsplit('X').collect();
assert_eq!(v, [""]);
let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect();
assert_eq!(v, ["leopard", "tiger", "", "lion"]);
let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect();
assert_eq!(v, ["leopard", "tiger", "lion"]);
A more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect();
assert_eq!(v, ["ghi", "def", "abc"]);
sourcepub fn split_terminator<'a, P>(&'a self, pat: P) -> SplitTerminator<'a, P> where
P: Pattern<'a>,
pub fn split_terminator<'a, P>(&'a self, pat: P) -> SplitTerminator<'a, P> where
P: Pattern<'a>,
An iterator over substrings of the given string slice, separated by characters matched by a pattern.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Equivalent to split
, except that the trailing substring
is skipped if empty.
This method can be used for string data that is terminated, rather than separated by a pattern.
Iterator behavior
The returned iterator will be a DoubleEndedIterator
if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, e.g., char
, but not for &str
.
If the pattern allows a reverse search but its results might differ
from a forward search, the rsplit_terminator
method can be used.
Examples
Basic usage:
let v: Vec<&str> = "A.B.".split_terminator('.').collect();
assert_eq!(v, ["A", "B"]);
let v: Vec<&str> = "A..B..".split_terminator(".").collect();
assert_eq!(v, ["A", "", "B", ""]);
let v: Vec<&str> = "A.B:C.D".split_terminator(&['.', ':'][..]).collect();
assert_eq!(v, ["A", "B", "C", "D"]);
sourcepub fn rsplit_terminator<'a, P>(&'a self, pat: P) -> RSplitTerminator<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
pub fn rsplit_terminator<'a, P>(&'a self, pat: P) -> RSplitTerminator<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
An iterator over substrings of self
, separated by characters
matched by a pattern and yielded in reverse order.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Equivalent to split
, except that the trailing substring is
skipped if empty.
This method can be used for string data that is terminated, rather than separated by a pattern.
Iterator behavior
The returned iterator requires that the pattern supports a reverse search, and it will be double ended if a forward/reverse search yields the same elements.
For iterating from the front, the split_terminator
method can be
used.
Examples
let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect();
assert_eq!(v, ["B", "A"]);
let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect();
assert_eq!(v, ["", "B", "", "A"]);
let v: Vec<&str> = "A.B:C.D".rsplit_terminator(&['.', ':'][..]).collect();
assert_eq!(v, ["D", "C", "B", "A"]);
sourcepub fn splitn<'a, P>(&'a self, n: usize, pat: P) -> SplitN<'a, P> where
P: Pattern<'a>,
pub fn splitn<'a, P>(&'a self, n: usize, pat: P) -> SplitN<'a, P> where
P: Pattern<'a>,
An iterator over substrings of the given string slice, separated by a
pattern, restricted to returning at most n
items.
If n
substrings are returned, the last substring (the n
th substring)
will contain the remainder of the string.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Iterator behavior
The returned iterator will not be double ended, because it is not efficient to support.
If the pattern allows a reverse search, the rsplitn
method can be
used.
Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect();
assert_eq!(v, ["Mary", "had", "a little lambda"]);
let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect();
assert_eq!(v, ["lion", "", "tigerXleopard"]);
let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect();
assert_eq!(v, ["abcXdef"]);
let v: Vec<&str> = "".splitn(1, 'X').collect();
assert_eq!(v, [""]);
A more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect();
assert_eq!(v, ["abc", "defXghi"]);
sourcepub fn rsplitn<'a, P>(&'a self, n: usize, pat: P) -> RSplitN<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
pub fn rsplitn<'a, P>(&'a self, n: usize, pat: P) -> RSplitN<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
An iterator over substrings of this string slice, separated by a
pattern, starting from the end of the string, restricted to returning
at most n
items.
If n
substrings are returned, the last substring (the n
th substring)
will contain the remainder of the string.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Iterator behavior
The returned iterator will not be double ended, because it is not efficient to support.
For splitting from the front, the splitn
method can be used.
Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect();
assert_eq!(v, ["lamb", "little", "Mary had a"]);
let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect();
assert_eq!(v, ["leopard", "tiger", "lionX"]);
let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect();
assert_eq!(v, ["leopard", "lion::tiger"]);
A more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect();
assert_eq!(v, ["ghi", "abc1def"]);
1.52.0 · sourcepub fn split_once<'a, P>(&'a self, delimiter: P) -> Option<(&'a str, &'a str)> where
P: Pattern<'a>,
pub fn split_once<'a, P>(&'a self, delimiter: P) -> Option<(&'a str, &'a str)> where
P: Pattern<'a>,
Splits the string on the first occurrence of the specified delimiter and returns prefix before delimiter and suffix after delimiter.
Examples
assert_eq!("cfg".split_once('='), None);
assert_eq!("cfg=foo".split_once('='), Some(("cfg", "foo")));
assert_eq!("cfg=foo=bar".split_once('='), Some(("cfg", "foo=bar")));
1.52.0 · sourcepub fn rsplit_once<'a, P>(&'a self, delimiter: P) -> Option<(&'a str, &'a str)> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
pub fn rsplit_once<'a, P>(&'a self, delimiter: P) -> Option<(&'a str, &'a str)> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
Splits the string on the last occurrence of the specified delimiter and returns prefix before delimiter and suffix after delimiter.
Examples
assert_eq!("cfg".rsplit_once('='), None);
assert_eq!("cfg=foo".rsplit_once('='), Some(("cfg", "foo")));
assert_eq!("cfg=foo=bar".rsplit_once('='), Some(("cfg=foo", "bar")));
1.2.0 · sourcepub fn matches<'a, P>(&'a self, pat: P) -> Matches<'a, P> where
P: Pattern<'a>,
pub fn matches<'a, P>(&'a self, pat: P) -> Matches<'a, P> where
P: Pattern<'a>,
An iterator over the disjoint matches of a pattern within the given string slice.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Iterator behavior
The returned iterator will be a DoubleEndedIterator
if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, e.g., char
, but not for &str
.
If the pattern allows a reverse search but its results might differ
from a forward search, the rmatches
method can be used.
Examples
Basic usage:
let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect();
assert_eq!(v, ["abc", "abc", "abc"]);
let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect();
assert_eq!(v, ["1", "2", "3"]);
1.2.0 · sourcepub fn rmatches<'a, P>(&'a self, pat: P) -> RMatches<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
pub fn rmatches<'a, P>(&'a self, pat: P) -> RMatches<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
An iterator over the disjoint matches of a pattern within this string slice, yielded in reverse order.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Iterator behavior
The returned iterator requires that the pattern supports a reverse
search, and it will be a DoubleEndedIterator
if a forward/reverse
search yields the same elements.
For iterating from the front, the matches
method can be used.
Examples
Basic usage:
let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect();
assert_eq!(v, ["abc", "abc", "abc"]);
let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect();
assert_eq!(v, ["3", "2", "1"]);
1.5.0 · sourcepub fn match_indices<'a, P>(&'a self, pat: P) -> MatchIndices<'a, P> where
P: Pattern<'a>,
pub fn match_indices<'a, P>(&'a self, pat: P) -> MatchIndices<'a, P> where
P: Pattern<'a>,
An iterator over the disjoint matches of a pattern within this string slice as well as the index that the match starts at.
For matches of pat
within self
that overlap, only the indices
corresponding to the first match are returned.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Iterator behavior
The returned iterator will be a DoubleEndedIterator
if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, e.g., char
, but not for &str
.
If the pattern allows a reverse search but its results might differ
from a forward search, the rmatch_indices
method can be used.
Examples
Basic usage:
let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect();
assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]);
let v: Vec<_> = "1abcabc2".match_indices("abc").collect();
assert_eq!(v, [(1, "abc"), (4, "abc")]);
let v: Vec<_> = "ababa".match_indices("aba").collect();
assert_eq!(v, [(0, "aba")]); // only the first `aba`
1.5.0 · sourcepub fn rmatch_indices<'a, P>(&'a self, pat: P) -> RMatchIndices<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
pub fn rmatch_indices<'a, P>(&'a self, pat: P) -> RMatchIndices<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
An iterator over the disjoint matches of a pattern within self
,
yielded in reverse order along with the index of the match.
For matches of pat
within self
that overlap, only the indices
corresponding to the last match are returned.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Iterator behavior
The returned iterator requires that the pattern supports a reverse
search, and it will be a DoubleEndedIterator
if a forward/reverse
search yields the same elements.
For iterating from the front, the match_indices
method can be used.
Examples
Basic usage:
let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect();
assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]);
let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect();
assert_eq!(v, [(4, "abc"), (1, "abc")]);
let v: Vec<_> = "ababa".rmatch_indices("aba").collect();
assert_eq!(v, [(2, "aba")]); // only the last `aba`
sourcepub fn trim(&self) -> &str
pub fn trim(&self) -> &str
Returns a string slice with leading and trailing whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space
, which includes newlines.
Examples
Basic usage:
let s = "\n Hello\tworld\t\n";
assert_eq!("Hello\tworld", s.trim());
1.30.0 · sourcepub fn trim_start(&self) -> &str
pub fn trim_start(&self) -> &str
Returns a string slice with leading whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space
, which includes newlines.
Text directionality
A string is a sequence of bytes. start
in this context means the first
position of that byte string; for a left-to-right language like English or
Russian, this will be left side, and for right-to-left languages like
Arabic or Hebrew, this will be the right side.
Examples
Basic usage:
let s = "\n Hello\tworld\t\n";
assert_eq!("Hello\tworld\t\n", s.trim_start());
Directionality:
let s = " English ";
assert!(Some('E') == s.trim_start().chars().next());
let s = " עברית ";
assert!(Some('ע') == s.trim_start().chars().next());
1.30.0 · sourcepub fn trim_end(&self) -> &str
pub fn trim_end(&self) -> &str
Returns a string slice with trailing whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space
, which includes newlines.
Text directionality
A string is a sequence of bytes. end
in this context means the last
position of that byte string; for a left-to-right language like English or
Russian, this will be right side, and for right-to-left languages like
Arabic or Hebrew, this will be the left side.
Examples
Basic usage:
let s = "\n Hello\tworld\t\n";
assert_eq!("\n Hello\tworld", s.trim_end());
Directionality:
let s = " English ";
assert!(Some('h') == s.trim_end().chars().rev().next());
let s = " עברית ";
assert!(Some('ת') == s.trim_end().chars().rev().next());
sourcepub fn trim_left(&self) -> &str
👎 Deprecated since 1.33.0: superseded by trim_start
pub fn trim_left(&self) -> &str
superseded by trim_start
Returns a string slice with leading whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space
.
Text directionality
A string is a sequence of bytes. ‘Left’ in this context means the first position of that byte string; for a language like Arabic or Hebrew which are ‘right to left’ rather than ‘left to right’, this will be the right side, not the left.
Examples
Basic usage:
let s = " Hello\tworld\t";
assert_eq!("Hello\tworld\t", s.trim_left());
Directionality:
let s = " English";
assert!(Some('E') == s.trim_left().chars().next());
let s = " עברית";
assert!(Some('ע') == s.trim_left().chars().next());
sourcepub fn trim_right(&self) -> &str
👎 Deprecated since 1.33.0: superseded by trim_end
pub fn trim_right(&self) -> &str
superseded by trim_end
Returns a string slice with trailing whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space
.
Text directionality
A string is a sequence of bytes. ‘Right’ in this context means the last position of that byte string; for a language like Arabic or Hebrew which are ‘right to left’ rather than ‘left to right’, this will be the left side, not the right.
Examples
Basic usage:
let s = " Hello\tworld\t";
assert_eq!(" Hello\tworld", s.trim_right());
Directionality:
let s = "English ";
assert!(Some('h') == s.trim_right().chars().rev().next());
let s = "עברית ";
assert!(Some('ת') == s.trim_right().chars().rev().next());
sourcepub fn trim_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: DoubleEndedSearcher<'a>,
pub fn trim_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: DoubleEndedSearcher<'a>,
Returns a string slice with all prefixes and suffixes that match a pattern repeatedly removed.
The pattern can be a char
, a slice of char
s, or a function
or closure that determines if a character matches.
Examples
Simple patterns:
assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar");
assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_matches(x), "foo1bar");
A more complex pattern, using a closure:
assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar");
1.30.0 · sourcepub fn trim_start_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>,
pub fn trim_start_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>,
Returns a string slice with all prefixes that match a pattern repeatedly removed.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Text directionality
A string is a sequence of bytes. start
in this context means the first
position of that byte string; for a left-to-right language like English or
Russian, this will be left side, and for right-to-left languages like
Arabic or Hebrew, this will be the right side.
Examples
Basic usage:
assert_eq!("11foo1bar11".trim_start_matches('1'), "foo1bar11");
assert_eq!("123foo1bar123".trim_start_matches(char::is_numeric), "foo1bar123");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_start_matches(x), "foo1bar12");
1.45.0 · sourcepub fn strip_prefix<'a, P>(&'a self, prefix: P) -> Option<&'a str> where
P: Pattern<'a>,
pub fn strip_prefix<'a, P>(&'a self, prefix: P) -> Option<&'a str> where
P: Pattern<'a>,
Returns a string slice with the prefix removed.
If the string starts with the pattern prefix
, returns substring after the prefix, wrapped
in Some
. Unlike trim_start_matches
, this method removes the prefix exactly once.
If the string does not start with prefix
, returns None
.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Examples
assert_eq!("foo:bar".strip_prefix("foo:"), Some("bar"));
assert_eq!("foo:bar".strip_prefix("bar"), None);
assert_eq!("foofoo".strip_prefix("foo"), Some("foo"));
1.45.0 · sourcepub fn strip_suffix<'a, P>(&'a self, suffix: P) -> Option<&'a str> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
pub fn strip_suffix<'a, P>(&'a self, suffix: P) -> Option<&'a str> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
Returns a string slice with the suffix removed.
If the string ends with the pattern suffix
, returns the substring before the suffix,
wrapped in Some
. Unlike trim_end_matches
, this method removes the suffix exactly once.
If the string does not end with suffix
, returns None
.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Examples
assert_eq!("bar:foo".strip_suffix(":foo"), Some("bar"));
assert_eq!("bar:foo".strip_suffix("bar"), None);
assert_eq!("foofoo".strip_suffix("foo"), Some("foo"));
1.30.0 · sourcepub fn trim_end_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
pub fn trim_end_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
Returns a string slice with all suffixes that match a pattern repeatedly removed.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Text directionality
A string is a sequence of bytes. end
in this context means the last
position of that byte string; for a left-to-right language like English or
Russian, this will be right side, and for right-to-left languages like
Arabic or Hebrew, this will be the left side.
Examples
Simple patterns:
assert_eq!("11foo1bar11".trim_end_matches('1'), "11foo1bar");
assert_eq!("123foo1bar123".trim_end_matches(char::is_numeric), "123foo1bar");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_end_matches(x), "12foo1bar");
A more complex pattern, using a closure:
assert_eq!("1fooX".trim_end_matches(|c| c == '1' || c == 'X'), "1foo");
sourcepub fn trim_left_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>,
👎 Deprecated since 1.33.0: superseded by trim_start_matches
pub fn trim_left_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>,
superseded by trim_start_matches
Returns a string slice with all prefixes that match a pattern repeatedly removed.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Text directionality
A string is a sequence of bytes. ‘Left’ in this context means the first position of that byte string; for a language like Arabic or Hebrew which are ‘right to left’ rather than ‘left to right’, this will be the right side, not the left.
Examples
Basic usage:
assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11");
assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12");
sourcepub fn trim_right_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
👎 Deprecated since 1.33.0: superseded by trim_end_matches
pub fn trim_right_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
superseded by trim_end_matches
Returns a string slice with all suffixes that match a pattern repeatedly removed.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Text directionality
A string is a sequence of bytes. ‘Right’ in this context means the last position of that byte string; for a language like Arabic or Hebrew which are ‘right to left’ rather than ‘left to right’, this will be the left side, not the right.
Examples
Simple patterns:
assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar");
assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar");
A more complex pattern, using a closure:
assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo");
sourcepub fn parse<F>(&self) -> Result<F, <F as FromStr>::Err> where
F: FromStr,
pub fn parse<F>(&self) -> Result<F, <F as FromStr>::Err> where
F: FromStr,
Parses this string slice into another type.
Because parse
is so general, it can cause problems with type
inference. As such, parse
is one of the few times you’ll see
the syntax affectionately known as the ‘turbofish’: ::<>
. This
helps the inference algorithm understand specifically which type
you’re trying to parse into.
parse
can parse into any type that implements the FromStr
trait.
Errors
Will return Err
if it’s not possible to parse this string slice into
the desired type.
Examples
Basic usage
let four: u32 = "4".parse().unwrap();
assert_eq!(4, four);
Using the ‘turbofish’ instead of annotating four
:
let four = "4".parse::<u32>();
assert_eq!(Ok(4), four);
Failing to parse:
let nope = "j".parse::<u32>();
assert!(nope.is_err());
1.23.0 · sourcepub fn is_ascii(&self) -> bool
pub fn is_ascii(&self) -> bool
Checks if all characters in this string are within the ASCII range.
Examples
let ascii = "hello!\n";
let non_ascii = "Grüße, Jürgen ❤";
assert!(ascii.is_ascii());
assert!(!non_ascii.is_ascii());
1.23.0 · sourcepub fn eq_ignore_ascii_case(&self, other: &str) -> bool
pub fn eq_ignore_ascii_case(&self, other: &str) -> bool
Checks that two strings are an ASCII case-insensitive match.
Same as to_ascii_lowercase(a) == to_ascii_lowercase(b)
,
but without allocating and copying temporaries.
Examples
assert!("Ferris".eq_ignore_ascii_case("FERRIS"));
assert!("Ferrös".eq_ignore_ascii_case("FERRöS"));
assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS"));
1.23.0 · sourcepub fn make_ascii_uppercase(&mut self)
pub fn make_ascii_uppercase(&mut self)
Converts this string to its ASCII upper case equivalent in-place.
ASCII letters ‘a’ to ‘z’ are mapped to ‘A’ to ‘Z’, but non-ASCII letters are unchanged.
To return a new uppercased value without modifying the existing one, use
to_ascii_uppercase()
.
Examples
let mut s = String::from("Grüße, Jürgen ❤");
s.make_ascii_uppercase();
assert_eq!("GRüßE, JüRGEN ❤", s);
1.23.0 · sourcepub fn make_ascii_lowercase(&mut self)
pub fn make_ascii_lowercase(&mut self)
Converts this string to its ASCII lower case equivalent in-place.
ASCII letters ‘A’ to ‘Z’ are mapped to ‘a’ to ‘z’, but non-ASCII letters are unchanged.
To return a new lowercased value without modifying the existing one, use
to_ascii_lowercase()
.
Examples
let mut s = String::from("GRÜßE, JÜRGEN ❤");
s.make_ascii_lowercase();
assert_eq!("grÜße, jÜrgen ❤", s);
1.34.0 · sourcepub fn escape_debug(&self) -> EscapeDebug<'_>
pub fn escape_debug(&self) -> EscapeDebug<'_>
Return an iterator that escapes each char in self
with char::escape_debug
.
Note: only extended grapheme codepoints that begin the string will be escaped.
Examples
As an iterator:
for c in "❤\n!".escape_debug() {
print!("{c}");
}
println!();
Using println!
directly:
println!("{}", "❤\n!".escape_debug());
Both are equivalent to:
println!("❤\\n!");
Using to_string
:
assert_eq!("❤\n!".escape_debug().to_string(), "❤\\n!");
1.34.0 · sourcepub fn escape_default(&self) -> EscapeDefault<'_>
pub fn escape_default(&self) -> EscapeDefault<'_>
Return an iterator that escapes each char in self
with char::escape_default
.
Examples
As an iterator:
for c in "❤\n!".escape_default() {
print!("{c}");
}
println!();
Using println!
directly:
println!("{}", "❤\n!".escape_default());
Both are equivalent to:
println!("\\u{{2764}}\\n!");
Using to_string
:
assert_eq!("❤\n!".escape_default().to_string(), "\\u{2764}\\n!");
1.34.0 · sourcepub fn escape_unicode(&self) -> EscapeUnicode<'_>
pub fn escape_unicode(&self) -> EscapeUnicode<'_>
Return an iterator that escapes each char in self
with char::escape_unicode
.
Examples
As an iterator:
for c in "❤\n!".escape_unicode() {
print!("{c}");
}
println!();
Using println!
directly:
println!("{}", "❤\n!".escape_unicode());
Both are equivalent to:
println!("\\u{{2764}}\\u{{a}}\\u{{21}}");
Using to_string
:
assert_eq!("❤\n!".escape_unicode().to_string(), "\\u{2764}\\u{a}\\u{21}");
sourcepub fn try_to_owned(&self) -> Result<String, TryReserveError>
pub fn try_to_owned(&self) -> Result<String, TryReserveError>
Tries to create a String
.
Examples
Basic usage:
let s: &str = "a";
let ss: String = s.try_to_owned().unwrap();
Trait Implementations
1.36.0 · sourceimpl BorrowMut<str> for String
impl BorrowMut<str> for String
sourcefn borrow_mut(&mut self) -> &mut str
fn borrow_mut(&mut self) -> &mut str
Mutably borrows from an owned value. Read more
1.26.0 · sourceimpl Index<RangeInclusive<usize>> for String
impl Index<RangeInclusive<usize>> for String
1.26.0 · sourceimpl Index<RangeToInclusive<usize>> for String
impl Index<RangeToInclusive<usize>> for String
1.26.0 · sourceimpl IndexMut<RangeInclusive<usize>> for String
impl IndexMut<RangeInclusive<usize>> for String
1.26.0 · sourceimpl IndexMut<RangeToInclusive<usize>> for String
impl IndexMut<RangeToInclusive<usize>> for String
sourceimpl Ord for String
impl Ord for String
sourceimpl PartialOrd<String> for String
impl PartialOrd<String> for String
sourcefn partial_cmp(&self, other: &String) -> Option<Ordering>
fn partial_cmp(&self, other: &String) -> Option<Ordering>
This method returns an ordering between self
and other
values if one exists. Read more
sourcefn lt(&self, other: &Rhs) -> bool
fn lt(&self, other: &Rhs) -> bool
This method tests less than (for self
and other
) and is used by the <
operator. Read more
sourcefn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
sourceimpl<'a, 'b> Pattern<'a> for &'b String
impl<'a, 'b> Pattern<'a> for &'b String
A convenience impl that delegates to the impl for &str
.
Examples
assert_eq!(String::from("Hello world").find("world"), Some(6));
type Searcher = <&'b str as Pattern<'a>>::Searcher
type Searcher = <&'b str as Pattern<'a>>::Searcher
pattern
)Associated searcher for this pattern
sourcefn into_searcher(self, haystack: &'a str) -> <&'b str as Pattern<'a>>::Searcher
fn into_searcher(self, haystack: &'a str) -> <&'b str as Pattern<'a>>::Searcher
pattern
)Constructs the associated searcher from
self
and the haystack
to search in. Read more
sourcefn is_contained_in(self, haystack: &'a str) -> bool
fn is_contained_in(self, haystack: &'a str) -> bool
pattern
)Checks whether the pattern matches anywhere in the haystack
sourcefn is_prefix_of(self, haystack: &'a str) -> bool
fn is_prefix_of(self, haystack: &'a str) -> bool
pattern
)Checks whether the pattern matches at the front of the haystack
sourcefn strip_prefix_of(self, haystack: &'a str) -> Option<&'a str>
fn strip_prefix_of(self, haystack: &'a str) -> Option<&'a str>
pattern
)Removes the pattern from the front of haystack, if it matches.
sourcefn is_suffix_of(self, haystack: &'a str) -> bool
fn is_suffix_of(self, haystack: &'a str) -> bool
pattern
)Checks whether the pattern matches at the back of the haystack
sourcefn strip_suffix_of(self, haystack: &'a str) -> Option<&'a str>
fn strip_suffix_of(self, haystack: &'a str) -> Option<&'a str>
pattern
)Removes the pattern from the back of haystack, if it matches.
impl Eq for String
impl StructuralEq for String
Auto Trait Implementations
impl RefUnwindSafe for String
impl Send for String
impl Sync for String
impl Unpin for String
impl UnwindSafe for String
Blanket Implementations
sourceimpl<T> BorrowMut<T> for T where
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
const: unstable · sourcefn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more