1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
// SPDX-License-Identifier: GPL-2.0

//! Kernel types.

use crate::init::{self, PinInit};
use alloc::boxed::Box;
use core::{
    cell::UnsafeCell,
    mem::MaybeUninit,
    ops::{Deref, DerefMut},
};

/// Used to transfer ownership to and from foreign (non-Rust) languages.
///
/// Ownership is transferred from Rust to a foreign language by calling [`Self::into_foreign`] and
/// later may be transferred back to Rust by calling [`Self::from_foreign`].
///
/// This trait is meant to be used in cases when Rust objects are stored in C objects and
/// eventually "freed" back to Rust.
pub trait ForeignOwnable: Sized {
    /// Type of values borrowed between calls to [`ForeignOwnable::into_foreign`] and
    /// [`ForeignOwnable::from_foreign`].
    type Borrowed<'a>;

    /// Converts a Rust-owned object to a foreign-owned one.
    ///
    /// The foreign representation is a pointer to void.
    fn into_foreign(self) -> *const core::ffi::c_void;

    /// Borrows a foreign-owned object.
    ///
    /// # Safety
    ///
    /// `ptr` must have been returned by a previous call to [`ForeignOwnable::into_foreign`] for
    /// which a previous matching [`ForeignOwnable::from_foreign`] hasn't been called yet.
    /// Additionally, all instances (if any) of values returned by [`ForeignOwnable::borrow_mut`]
    /// for this object must have been dropped.
    unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> Self::Borrowed<'a>;

    /// Mutably borrows a foreign-owned object.
    ///
    /// # Safety
    ///
    /// `ptr` must have been returned by a previous call to [`ForeignOwnable::into_foreign`] for
    /// which a previous matching [`ForeignOwnable::from_foreign`] hasn't been called yet.
    /// Additionally, all instances (if any) of values returned by [`ForeignOwnable::borrow`] and
    /// [`ForeignOwnable::borrow_mut`] for this object must have been dropped.
    unsafe fn borrow_mut(ptr: *const core::ffi::c_void) -> ScopeGuard<Self, fn(Self)> {
        // SAFETY: The safety requirements ensure that `ptr` came from a previous call to
        // `into_foreign`.
        ScopeGuard::new_with_data(unsafe { Self::from_foreign(ptr) }, |d| {
            d.into_foreign();
        })
    }

    /// Converts a foreign-owned object back to a Rust-owned one.
    ///
    /// # Safety
    ///
    /// `ptr` must have been returned by a previous call to [`ForeignOwnable::into_foreign`] for
    /// which a previous matching [`ForeignOwnable::from_foreign`] hasn't been called yet.
    /// Additionally, all instances (if any) of values returned by [`ForeignOwnable::borrow`] and
    /// [`ForeignOwnable::borrow_mut`] for this object must have been dropped.
    unsafe fn from_foreign(ptr: *const core::ffi::c_void) -> Self;
}

impl<T: 'static> ForeignOwnable for Box<T> {
    type Borrowed<'a> = &'a T;

    fn into_foreign(self) -> *const core::ffi::c_void {
        Box::into_raw(self) as _
    }

    unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> &'a T {
        // SAFETY: The safety requirements for this function ensure that the object is still alive,
        // so it is safe to dereference the raw pointer.
        // The safety requirements of `from_foreign` also ensure that the object remains alive for
        // the lifetime of the returned value.
        unsafe { &*ptr.cast() }
    }

    unsafe fn from_foreign(ptr: *const core::ffi::c_void) -> Self {
        // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
        // call to `Self::into_foreign`.
        unsafe { Box::from_raw(ptr as _) }
    }
}

impl ForeignOwnable for () {
    type Borrowed<'a> = ();

    fn into_foreign(self) -> *const core::ffi::c_void {
        core::ptr::NonNull::dangling().as_ptr()
    }

    unsafe fn borrow<'a>(_: *const core::ffi::c_void) -> Self::Borrowed<'a> {}

    unsafe fn from_foreign(_: *const core::ffi::c_void) -> Self {}
}

/// Runs a cleanup function/closure when dropped.
///
/// The [`ScopeGuard::dismiss`] function prevents the cleanup function from running.
///
/// # Examples
///
/// In the example below, we have multiple exit paths and we want to log regardless of which one is
/// taken:
/// ```
/// # use kernel::ScopeGuard;
/// fn example1(arg: bool) {
///     let _log = ScopeGuard::new(|| pr_info!("example1 completed\n"));
///
///     if arg {
///         return;
///     }
///
///     pr_info!("Do something...\n");
/// }
///
/// # example1(false);
/// # example1(true);
/// ```
///
/// In the example below, we want to log the same message on all early exits but a different one on
/// the main exit path:
/// ```
/// # use kernel::ScopeGuard;
/// fn example2(arg: bool) {
///     let log = ScopeGuard::new(|| pr_info!("example2 returned early\n"));
///
///     if arg {
///         return;
///     }
///
///     // (Other early returns...)
///
///     log.dismiss();
///     pr_info!("example2 no early return\n");
/// }
///
/// # example2(false);
/// # example2(true);
/// ```
///
/// In the example below, we need a mutable object (the vector) to be accessible within the log
/// function, so we wrap it in the [`ScopeGuard`]:
/// ```
/// # use kernel::ScopeGuard;
/// fn example3(arg: bool) -> Result {
///     let mut vec =
///         ScopeGuard::new_with_data(Vec::new(), |v| pr_info!("vec had {} elements\n", v.len()));
///
///     vec.try_push(10u8)?;
///     if arg {
///         return Ok(());
///     }
///     vec.try_push(20u8)?;
///     Ok(())
/// }
///
/// # assert_eq!(example3(false), Ok(()));
/// # assert_eq!(example3(true), Ok(()));
/// ```
///
/// # Invariants
///
/// The value stored in the struct is nearly always `Some(_)`, except between
/// [`ScopeGuard::dismiss`] and [`ScopeGuard::drop`]: in this case, it will be `None` as the value
/// will have been returned to the caller. Since  [`ScopeGuard::dismiss`] consumes the guard,
/// callers won't be able to use it anymore.
pub struct ScopeGuard<T, F: FnOnce(T)>(Option<(T, F)>);

impl<T, F: FnOnce(T)> ScopeGuard<T, F> {
    /// Creates a new guarded object wrapping the given data and with the given cleanup function.
    pub fn new_with_data(data: T, cleanup_func: F) -> Self {
        // INVARIANT: The struct is being initialised with `Some(_)`.
        Self(Some((data, cleanup_func)))
    }

    /// Prevents the cleanup function from running and returns the guarded data.
    pub fn dismiss(mut self) -> T {
        // INVARIANT: This is the exception case in the invariant; it is not visible to callers
        // because this function consumes `self`.
        self.0.take().unwrap().0
    }
}

impl ScopeGuard<(), fn(())> {
    /// Creates a new guarded object with the given cleanup function.
    pub fn new(cleanup: impl FnOnce()) -> ScopeGuard<(), impl FnOnce(())> {
        ScopeGuard::new_with_data((), move |_| cleanup())
    }
}

impl<T, F: FnOnce(T)> Deref for ScopeGuard<T, F> {
    type Target = T;

    fn deref(&self) -> &T {
        // The type invariants guarantee that `unwrap` will succeed.
        &self.0.as_ref().unwrap().0
    }
}

impl<T, F: FnOnce(T)> DerefMut for ScopeGuard<T, F> {
    fn deref_mut(&mut self) -> &mut T {
        // The type invariants guarantee that `unwrap` will succeed.
        &mut self.0.as_mut().unwrap().0
    }
}

impl<T, F: FnOnce(T)> Drop for ScopeGuard<T, F> {
    fn drop(&mut self) {
        // Run the cleanup function if one is still present.
        if let Some((data, cleanup)) = self.0.take() {
            cleanup(data)
        }
    }
}

/// Stores an opaque value.
///
/// This is meant to be used with FFI objects that are never interpreted by Rust code.
#[repr(transparent)]
pub struct Opaque<T>(MaybeUninit<UnsafeCell<T>>);

impl<T> Opaque<T> {
    /// Creates a new opaque value.
    pub const fn new(value: T) -> Self {
        Self(MaybeUninit::new(UnsafeCell::new(value)))
    }

    /// Creates an uninitialised value.
    pub const fn uninit() -> Self {
        Self(MaybeUninit::uninit())
    }

    /// Creates a pin-initializer from the given initializer closure.
    ///
    /// The returned initializer calls the given closure with the pointer to the inner `T` of this
    /// `Opaque`. Since this memory is uninitialized, the closure is not allowed to read from it.
    ///
    /// This function is safe, because the `T` inside of an `Opaque` is allowed to be
    /// uninitialized. Additionally, access to the inner `T` requires `unsafe`, so the caller needs
    /// to verify at that point that the inner value is valid.
    pub fn ffi_init(init_func: impl FnOnce(*mut T)) -> impl PinInit<Self> {
        // SAFETY: We contain a `MaybeUninit`, so it is OK for the `init_func` to not fully
        // initialize the `T`.
        unsafe {
            init::pin_init_from_closure::<_, ::core::convert::Infallible>(move |slot| {
                init_func(Self::raw_get(slot));
                Ok(())
            })
        }
    }

    /// Returns a raw pointer to the opaque data.
    pub fn get(&self) -> *mut T {
        UnsafeCell::raw_get(self.0.as_ptr())
    }

    /// Gets the value behind `this`.
    ///
    /// This function is useful to get access to the value without creating intermediate
    /// references.
    pub const fn raw_get(this: *const Self) -> *mut T {
        UnsafeCell::raw_get(this.cast::<UnsafeCell<T>>())
    }
}

/// A sum type that always holds either a value of type `L` or `R`.
pub enum Either<L, R> {
    /// Constructs an instance of [`Either`] containing a value of type `L`.
    Left(L),

    /// Constructs an instance of [`Either`] containing a value of type `R`.
    Right(R),
}