1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
// SPDX-License-Identifier: GPL-2.0
//! Crate for all kernel procedural macros.
#[macro_use]
mod quote;
mod concat_idents;
mod helpers;
mod module;
mod paste;
mod pin_data;
mod pinned_drop;
mod vtable;
mod zeroable;
use proc_macro::TokenStream;
/// Declares a kernel module.
///
/// The `type` argument should be a type which implements the [`Module`]
/// trait. Also accepts various forms of kernel metadata.
///
/// C header: [`include/linux/moduleparam.h`](srctree/include/linux/moduleparam.h)
///
/// [`Module`]: ../kernel/trait.Module.html
///
/// # Examples
///
/// ```ignore
/// use kernel::prelude::*;
///
/// module!{
/// type: MyModule,
/// name: "my_kernel_module",
/// author: "Rust for Linux Contributors",
/// description: "My very own kernel module!",
/// license: "GPL",
/// params: {
/// my_i32: i32 {
/// default: 42,
/// permissions: 0o000,
/// description: "Example of i32",
/// },
/// writeable_i32: i32 {
/// default: 42,
/// permissions: 0o644,
/// description: "Example of i32",
/// },
/// },
/// }
///
/// struct MyModule;
///
/// impl kernel::Module for MyModule {
/// fn init() -> Result<Self> {
/// // If the parameter is writeable, then the kparam lock must be
/// // taken to read the parameter:
/// {
/// let lock = THIS_MODULE.kernel_param_lock();
/// pr_info!("i32 param is: {}\n", writeable_i32.read(&lock));
/// }
/// // If the parameter is read only, it can be read without locking
/// // the kernel parameters:
/// pr_info!("i32 param is: {}\n", my_i32.read());
/// Ok(Self)
/// }
/// }
/// ```
///
/// # Supported argument types
/// - `type`: type which implements the [`Module`] trait (required).
/// - `name`: byte array of the name of the kernel module (required).
/// - `author`: byte array of the author of the kernel module.
/// - `description`: byte array of the description of the kernel module.
/// - `license`: byte array of the license of the kernel module (required).
/// - `alias`: byte array of alias name of the kernel module.
#[proc_macro]
pub fn module(ts: TokenStream) -> TokenStream {
module::module(ts)
}
/// Declares or implements a vtable trait.
///
/// Linux's use of pure vtables is very close to Rust traits, but they differ
/// in how unimplemented functions are represented. In Rust, traits can provide
/// default implementation for all non-required methods (and the default
/// implementation could just return `Error::EINVAL`); Linux typically use C
/// `NULL` pointers to represent these functions.
///
/// This attribute closes that gap. A trait can be annotated with the
/// `#[vtable]` attribute. Implementers of the trait will then also have to
/// annotate the trait with `#[vtable]`. This attribute generates a `HAS_*`
/// associated constant bool for each method in the trait that is set to true if
/// the implementer has overridden the associated method.
///
/// For a trait method to be optional, it must have a default implementation.
/// This is also the case for traits annotated with `#[vtable]`, but in this
/// case the default implementation will never be executed. The reason for this
/// is that the functions will be called through function pointers installed in
/// C side vtables. When an optional method is not implemented on a `#[vtable]`
/// trait, a NULL entry is installed in the vtable. Thus the default
/// implementation is never called. Since these traits are not designed to be
/// used on the Rust side, it should not be possible to call the default
/// implementation. This is done to ensure that we call the vtable methods
/// through the C vtable, and not through the Rust vtable. Therefore, the
/// default implementation should call `kernel::build_error`, which prevents
/// calls to this function at compile time:
///
/// ```compile_fail
/// # use kernel::error::VTABLE_DEFAULT_ERROR;
/// kernel::build_error(VTABLE_DEFAULT_ERROR)
/// ```
///
/// Note that you might need to import [`kernel::error::VTABLE_DEFAULT_ERROR`].
///
/// This macro should not be used when all functions are required.
///
/// # Examples
///
/// ```ignore
/// use kernel::error::VTABLE_DEFAULT_ERROR;
/// use kernel::prelude::*;
///
/// // Declares a `#[vtable]` trait
/// #[vtable]
/// pub trait Operations: Send + Sync + Sized {
/// fn foo(&self) -> Result<()> {
/// kernel::build_error(VTABLE_DEFAULT_ERROR)
/// }
///
/// fn bar(&self) -> Result<()> {
/// kernel::build_error(VTABLE_DEFAULT_ERROR)
/// }
/// }
///
/// struct Foo;
///
/// // Implements the `#[vtable]` trait
/// #[vtable]
/// impl Operations for Foo {
/// fn foo(&self) -> Result<()> {
/// # Err(EINVAL)
/// // ...
/// }
/// }
///
/// assert_eq!(<Foo as Operations>::HAS_FOO, true);
/// assert_eq!(<Foo as Operations>::HAS_BAR, false);
/// ```
///
/// [`kernel::error::VTABLE_DEFAULT_ERROR`]: ../kernel/error/constant.VTABLE_DEFAULT_ERROR.html
#[proc_macro_attribute]
pub fn vtable(attr: TokenStream, ts: TokenStream) -> TokenStream {
vtable::vtable(attr, ts)
}
/// Concatenate two identifiers.
///
/// This is useful in macros that need to declare or reference items with names
/// starting with a fixed prefix and ending in a user specified name. The resulting
/// identifier has the span of the second argument.
///
/// # Examples
///
/// ```ignore
/// use kernel::macro::concat_idents;
///
/// macro_rules! pub_no_prefix {
/// ($prefix:ident, $($newname:ident),+) => {
/// $(pub(crate) const $newname: u32 = kernel::macros::concat_idents!($prefix, $newname);)+
/// };
/// }
///
/// pub_no_prefix!(
/// binder_driver_return_protocol_,
/// BR_OK,
/// BR_ERROR,
/// BR_TRANSACTION,
/// BR_REPLY,
/// BR_DEAD_REPLY,
/// BR_TRANSACTION_COMPLETE,
/// BR_INCREFS,
/// BR_ACQUIRE,
/// BR_RELEASE,
/// BR_DECREFS,
/// BR_NOOP,
/// BR_SPAWN_LOOPER,
/// BR_DEAD_BINDER,
/// BR_CLEAR_DEATH_NOTIFICATION_DONE,
/// BR_FAILED_REPLY
/// );
///
/// assert_eq!(BR_OK, binder_driver_return_protocol_BR_OK);
/// ```
#[proc_macro]
pub fn concat_idents(ts: TokenStream) -> TokenStream {
concat_idents::concat_idents(ts)
}
/// Used to specify the pinning information of the fields of a struct.
///
/// This is somewhat similar in purpose as
/// [pin-project-lite](https://crates.io/crates/pin-project-lite).
/// Place this macro on a struct definition and then `#[pin]` in front of the attributes of each
/// field you want to structurally pin.
///
/// This macro enables the use of the [`pin_init!`] macro. When pin-initializing a `struct`,
/// then `#[pin]` directs the type of initializer that is required.
///
/// If your `struct` implements `Drop`, then you need to add `PinnedDrop` as arguments to this
/// macro, and change your `Drop` implementation to `PinnedDrop` annotated with
/// `#[`[`macro@pinned_drop`]`]`, since dropping pinned values requires extra care.
///
/// # Examples
///
/// ```rust,ignore
/// #[pin_data]
/// struct DriverData {
/// #[pin]
/// queue: Mutex<Vec<Command>>,
/// buf: Box<[u8; 1024 * 1024]>,
/// }
/// ```
///
/// ```rust,ignore
/// #[pin_data(PinnedDrop)]
/// struct DriverData {
/// #[pin]
/// queue: Mutex<Vec<Command>>,
/// buf: Box<[u8; 1024 * 1024]>,
/// raw_info: *mut Info,
/// }
///
/// #[pinned_drop]
/// impl PinnedDrop for DriverData {
/// fn drop(self: Pin<&mut Self>) {
/// unsafe { bindings::destroy_info(self.raw_info) };
/// }
/// }
/// ```
///
/// [`pin_init!`]: ../kernel/macro.pin_init.html
// ^ cannot use direct link, since `kernel` is not a dependency of `macros`.
#[proc_macro_attribute]
pub fn pin_data(inner: TokenStream, item: TokenStream) -> TokenStream {
pin_data::pin_data(inner, item)
}
/// Used to implement `PinnedDrop` safely.
///
/// Only works on structs that are annotated via `#[`[`macro@pin_data`]`]`.
///
/// # Examples
///
/// ```rust,ignore
/// #[pin_data(PinnedDrop)]
/// struct DriverData {
/// #[pin]
/// queue: Mutex<Vec<Command>>,
/// buf: Box<[u8; 1024 * 1024]>,
/// raw_info: *mut Info,
/// }
///
/// #[pinned_drop]
/// impl PinnedDrop for DriverData {
/// fn drop(self: Pin<&mut Self>) {
/// unsafe { bindings::destroy_info(self.raw_info) };
/// }
/// }
/// ```
#[proc_macro_attribute]
pub fn pinned_drop(args: TokenStream, input: TokenStream) -> TokenStream {
pinned_drop::pinned_drop(args, input)
}
/// Paste identifiers together.
///
/// Within the `paste!` macro, identifiers inside `[<` and `>]` are concatenated together to form a
/// single identifier.
///
/// This is similar to the [`paste`] crate, but with pasting feature limited to identifiers and
/// literals (lifetimes and documentation strings are not supported). There is a difference in
/// supported modifiers as well.
///
/// # Example
///
/// ```ignore
/// use kernel::macro::paste;
///
/// macro_rules! pub_no_prefix {
/// ($prefix:ident, $($newname:ident),+) => {
/// paste! {
/// $(pub(crate) const $newname: u32 = [<$prefix $newname>];)+
/// }
/// };
/// }
///
/// pub_no_prefix!(
/// binder_driver_return_protocol_,
/// BR_OK,
/// BR_ERROR,
/// BR_TRANSACTION,
/// BR_REPLY,
/// BR_DEAD_REPLY,
/// BR_TRANSACTION_COMPLETE,
/// BR_INCREFS,
/// BR_ACQUIRE,
/// BR_RELEASE,
/// BR_DECREFS,
/// BR_NOOP,
/// BR_SPAWN_LOOPER,
/// BR_DEAD_BINDER,
/// BR_CLEAR_DEATH_NOTIFICATION_DONE,
/// BR_FAILED_REPLY
/// );
///
/// assert_eq!(BR_OK, binder_driver_return_protocol_BR_OK);
/// ```
///
/// # Modifiers
///
/// For each identifier, it is possible to attach one or multiple modifiers to
/// it.
///
/// Currently supported modifiers are:
/// * `span`: change the span of concatenated identifier to the span of the specified token. By
/// default the span of the `[< >]` group is used.
/// * `lower`: change the identifier to lower case.
/// * `upper`: change the identifier to upper case.
///
/// ```ignore
/// use kernel::macro::paste;
///
/// macro_rules! pub_no_prefix {
/// ($prefix:ident, $($newname:ident),+) => {
/// kernel::macros::paste! {
/// $(pub(crate) const fn [<$newname:lower:span>]: u32 = [<$prefix $newname:span>];)+
/// }
/// };
/// }
///
/// pub_no_prefix!(
/// binder_driver_return_protocol_,
/// BR_OK,
/// BR_ERROR,
/// BR_TRANSACTION,
/// BR_REPLY,
/// BR_DEAD_REPLY,
/// BR_TRANSACTION_COMPLETE,
/// BR_INCREFS,
/// BR_ACQUIRE,
/// BR_RELEASE,
/// BR_DECREFS,
/// BR_NOOP,
/// BR_SPAWN_LOOPER,
/// BR_DEAD_BINDER,
/// BR_CLEAR_DEATH_NOTIFICATION_DONE,
/// BR_FAILED_REPLY
/// );
///
/// assert_eq!(br_ok(), binder_driver_return_protocol_BR_OK);
/// ```
///
/// # Literals
///
/// Literals can also be concatenated with other identifiers:
///
/// ```ignore
/// macro_rules! create_numbered_fn {
/// ($name:literal, $val:literal) => {
/// kernel::macros::paste! {
/// fn [<some_ $name _fn $val>]() -> u32 { $val }
/// }
/// };
/// }
///
/// create_numbered_fn!("foo", 100);
///
/// assert_eq!(some_foo_fn100(), 100)
/// ```
///
/// [`paste`]: https://docs.rs/paste/
#[proc_macro]
pub fn paste(input: TokenStream) -> TokenStream {
let mut tokens = input.into_iter().collect();
paste::expand(&mut tokens);
tokens.into_iter().collect()
}
/// Derives the [`Zeroable`] trait for the given struct.
///
/// This can only be used for structs where every field implements the [`Zeroable`] trait.
///
/// # Examples
///
/// ```rust,ignore
/// #[derive(Zeroable)]
/// pub struct DriverData {
/// id: i64,
/// buf_ptr: *mut u8,
/// len: usize,
/// }
/// ```
#[proc_macro_derive(Zeroable)]
pub fn derive_zeroable(input: TokenStream) -> TokenStream {
zeroable::derive(input)
}