Type Alias core::arch::x86::_MM_CMPINT_ENUM
source · pub type _MM_CMPINT_ENUM = i32;
stdsimd
#48556)Expand description
The _MM_CMPINT_ENUM
type used to specify comparison operations in AVX-512 intrinsics.
Implementations§
source§impl i32
impl i32
1.0.0 · sourcepub fn from_str_radix(src: &str, radix: u32) -> Result<Self, ParseIntError>
pub fn from_str_radix(src: &str, radix: u32) -> Result<Self, ParseIntError>
Converts a string slice in a given base to an integer.
The string is expected to be an optional +
or -
sign followed by digits.
Leading and trailing whitespace represent an error. Digits are a subset of these characters,
depending on radix
:
0-9
a-z
A-Z
Panics
This function panics if radix
is not in the range from 2 to 36.
Examples
Basic usage:
assert_eq!(i32::from_str_radix("A", 16), Ok(10));
Run1.0.0 (const: 1.32.0) · sourcepub const fn count_ones(self) -> u32
pub const fn count_ones(self) -> u32
1.0.0 (const: 1.32.0) · sourcepub const fn count_zeros(self) -> u32
pub const fn count_zeros(self) -> u32
1.0.0 (const: 1.32.0) · sourcepub const fn leading_zeros(self) -> u32
pub const fn leading_zeros(self) -> u32
Returns the number of leading zeros in the binary representation of self
.
Depending on what you’re doing with the value, you might also be interested in the
ilog2
function which returns a consistent number, even if the type widens.
Examples
Basic usage:
let n = -1i32;
assert_eq!(n.leading_zeros(), 0);
Run1.0.0 (const: 1.32.0) · sourcepub const fn trailing_zeros(self) -> u32
pub const fn trailing_zeros(self) -> u32
1.46.0 (const: 1.46.0) · sourcepub const fn leading_ones(self) -> u32
pub const fn leading_ones(self) -> u32
1.46.0 (const: 1.46.0) · sourcepub const fn trailing_ones(self) -> u32
pub const fn trailing_ones(self) -> u32
1.0.0 (const: 1.32.0) · sourcepub const fn rotate_left(self, n: u32) -> Self
pub const fn rotate_left(self, n: u32) -> Self
1.0.0 (const: 1.32.0) · sourcepub const fn rotate_right(self, n: u32) -> Self
pub const fn rotate_right(self, n: u32) -> Self
1.0.0 (const: 1.32.0) · sourcepub const fn swap_bytes(self) -> Self
pub const fn swap_bytes(self) -> Self
1.37.0 (const: 1.37.0) · sourcepub const fn reverse_bits(self) -> Self
pub const fn reverse_bits(self) -> Self
Reverses the order of bits in the integer. The least significant bit becomes the most significant bit, second least-significant bit becomes second most-significant bit, etc.
Examples
Basic usage:
let n = 0x12345678i32;
let m = n.reverse_bits();
assert_eq!(m, 0x1e6a2c48);
assert_eq!(0, 0i32.reverse_bits());
Run1.0.0 (const: 1.32.0) · sourcepub const fn from_le(x: Self) -> Self
pub const fn from_le(x: Self) -> Self
Converts an integer from little endian to the target’s endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
Examples
Basic usage:
let n = 0x1Ai32;
if cfg!(target_endian = "little") {
assert_eq!(i32::from_le(n), n)
} else {
assert_eq!(i32::from_le(n), n.swap_bytes())
}
Run1.0.0 (const: 1.47.0) · sourcepub const fn checked_add(self, rhs: Self) -> Option<Self>
pub const fn checked_add(self, rhs: Self) -> Option<Self>
const: unstable · sourcepub unsafe fn unchecked_add(self, rhs: Self) -> Self
🔬This is a nightly-only experimental API. (unchecked_math
#85122)
pub unsafe fn unchecked_add(self, rhs: Self) -> Self
unchecked_math
#85122)Unchecked integer addition. Computes self + rhs
, assuming overflow
cannot occur.
Safety
This results in undefined behavior when
self + rhs > i32::MAX
or self + rhs < i32::MIN
,
i.e. when checked_add
would return None
.
1.66.0 (const: 1.66.0) · sourcepub const fn checked_add_unsigned(self, rhs: u32) -> Option<Self>
pub const fn checked_add_unsigned(self, rhs: u32) -> Option<Self>
1.0.0 (const: 1.47.0) · sourcepub const fn checked_sub(self, rhs: Self) -> Option<Self>
pub const fn checked_sub(self, rhs: Self) -> Option<Self>
const: unstable · sourcepub unsafe fn unchecked_sub(self, rhs: Self) -> Self
🔬This is a nightly-only experimental API. (unchecked_math
#85122)
pub unsafe fn unchecked_sub(self, rhs: Self) -> Self
unchecked_math
#85122)Unchecked integer subtraction. Computes self - rhs
, assuming overflow
cannot occur.
Safety
This results in undefined behavior when
self - rhs > i32::MAX
or self - rhs < i32::MIN
,
i.e. when checked_sub
would return None
.
1.66.0 (const: 1.66.0) · sourcepub const fn checked_sub_unsigned(self, rhs: u32) -> Option<Self>
pub const fn checked_sub_unsigned(self, rhs: u32) -> Option<Self>
1.0.0 (const: 1.47.0) · sourcepub const fn checked_mul(self, rhs: Self) -> Option<Self>
pub const fn checked_mul(self, rhs: Self) -> Option<Self>
const: unstable · sourcepub unsafe fn unchecked_mul(self, rhs: Self) -> Self
🔬This is a nightly-only experimental API. (unchecked_math
#85122)
pub unsafe fn unchecked_mul(self, rhs: Self) -> Self
unchecked_math
#85122)Unchecked integer multiplication. Computes self * rhs
, assuming overflow
cannot occur.
Safety
This results in undefined behavior when
self * rhs > i32::MAX
or self * rhs < i32::MIN
,
i.e. when checked_mul
would return None
.
1.0.0 (const: 1.52.0) · sourcepub const fn checked_div(self, rhs: Self) -> Option<Self>
pub const fn checked_div(self, rhs: Self) -> Option<Self>
1.38.0 (const: 1.52.0) · sourcepub const fn checked_div_euclid(self, rhs: Self) -> Option<Self>
pub const fn checked_div_euclid(self, rhs: Self) -> Option<Self>
Checked Euclidean division. Computes self.div_euclid(rhs)
,
returning None
if rhs == 0
or the division results in overflow.
Examples
Basic usage:
assert_eq!((i32::MIN + 1).checked_div_euclid(-1), Some(2147483647));
assert_eq!(i32::MIN.checked_div_euclid(-1), None);
assert_eq!((1i32).checked_div_euclid(0), None);
Run1.7.0 (const: 1.52.0) · sourcepub const fn checked_rem(self, rhs: Self) -> Option<Self>
pub const fn checked_rem(self, rhs: Self) -> Option<Self>
1.38.0 (const: 1.52.0) · sourcepub const fn checked_rem_euclid(self, rhs: Self) -> Option<Self>
pub const fn checked_rem_euclid(self, rhs: Self) -> Option<Self>
1.7.0 (const: 1.47.0) · sourcepub const fn checked_neg(self) -> Option<Self>
pub const fn checked_neg(self) -> Option<Self>
1.7.0 (const: 1.47.0) · sourcepub const fn checked_shl(self, rhs: u32) -> Option<Self>
pub const fn checked_shl(self, rhs: u32) -> Option<Self>
const: unstable · sourcepub unsafe fn unchecked_shl(self, rhs: u32) -> Self
🔬This is a nightly-only experimental API. (unchecked_math
#85122)
pub unsafe fn unchecked_shl(self, rhs: u32) -> Self
unchecked_math
#85122)Unchecked shift left. Computes self << rhs
, assuming that
rhs
is less than the number of bits in self
.
Safety
This results in undefined behavior if rhs
is larger than
or equal to the number of bits in self
,
i.e. when checked_shl
would return None
.
1.7.0 (const: 1.47.0) · sourcepub const fn checked_shr(self, rhs: u32) -> Option<Self>
pub const fn checked_shr(self, rhs: u32) -> Option<Self>
const: unstable · sourcepub unsafe fn unchecked_shr(self, rhs: u32) -> Self
🔬This is a nightly-only experimental API. (unchecked_math
#85122)
pub unsafe fn unchecked_shr(self, rhs: u32) -> Self
unchecked_math
#85122)Unchecked shift right. Computes self >> rhs
, assuming that
rhs
is less than the number of bits in self
.
Safety
This results in undefined behavior if rhs
is larger than
or equal to the number of bits in self
,
i.e. when checked_shr
would return None
.
1.13.0 (const: 1.47.0) · sourcepub const fn checked_abs(self) -> Option<Self>
pub const fn checked_abs(self) -> Option<Self>
1.34.0 (const: 1.50.0) · sourcepub const fn checked_pow(self, exp: u32) -> Option<Self>
pub const fn checked_pow(self, exp: u32) -> Option<Self>
const: unstable · sourcepub fn checked_isqrt(self) -> Option<Self>
🔬This is a nightly-only experimental API. (isqrt
#116226)
pub fn checked_isqrt(self) -> Option<Self>
isqrt
#116226)1.0.0 (const: 1.47.0) · sourcepub const fn saturating_add(self, rhs: Self) -> Self
pub const fn saturating_add(self, rhs: Self) -> Self
1.66.0 (const: 1.66.0) · sourcepub const fn saturating_add_unsigned(self, rhs: u32) -> Self
pub const fn saturating_add_unsigned(self, rhs: u32) -> Self
1.0.0 (const: 1.47.0) · sourcepub const fn saturating_sub(self, rhs: Self) -> Self
pub const fn saturating_sub(self, rhs: Self) -> Self
1.66.0 (const: 1.66.0) · sourcepub const fn saturating_sub_unsigned(self, rhs: u32) -> Self
pub const fn saturating_sub_unsigned(self, rhs: u32) -> Self
1.45.0 (const: 1.47.0) · sourcepub const fn saturating_neg(self) -> Self
pub const fn saturating_neg(self) -> Self
Saturating integer negation. Computes -self
, returning MAX
if self == MIN
instead of overflowing.
Examples
Basic usage:
assert_eq!(100i32.saturating_neg(), -100);
assert_eq!((-100i32).saturating_neg(), 100);
assert_eq!(i32::MIN.saturating_neg(), i32::MAX);
assert_eq!(i32::MAX.saturating_neg(), i32::MIN + 1);
Run1.45.0 (const: 1.47.0) · sourcepub const fn saturating_abs(self) -> Self
pub const fn saturating_abs(self) -> Self
Saturating absolute value. Computes self.abs()
, returning MAX
if self == MIN
instead of overflowing.
Examples
Basic usage:
assert_eq!(100i32.saturating_abs(), 100);
assert_eq!((-100i32).saturating_abs(), 100);
assert_eq!(i32::MIN.saturating_abs(), i32::MAX);
assert_eq!((i32::MIN + 1).saturating_abs(), i32::MAX);
Run1.7.0 (const: 1.47.0) · sourcepub const fn saturating_mul(self, rhs: Self) -> Self
pub const fn saturating_mul(self, rhs: Self) -> Self
1.58.0 (const: 1.58.0) · sourcepub const fn saturating_div(self, rhs: Self) -> Self
pub const fn saturating_div(self, rhs: Self) -> Self
1.34.0 (const: 1.50.0) · sourcepub const fn saturating_pow(self, exp: u32) -> Self
pub const fn saturating_pow(self, exp: u32) -> Self
1.0.0 (const: 1.32.0) · sourcepub const fn wrapping_add(self, rhs: Self) -> Self
pub const fn wrapping_add(self, rhs: Self) -> Self
1.66.0 (const: 1.66.0) · sourcepub const fn wrapping_add_unsigned(self, rhs: u32) -> Self
pub const fn wrapping_add_unsigned(self, rhs: u32) -> Self
1.0.0 (const: 1.32.0) · sourcepub const fn wrapping_sub(self, rhs: Self) -> Self
pub const fn wrapping_sub(self, rhs: Self) -> Self
1.66.0 (const: 1.66.0) · sourcepub const fn wrapping_sub_unsigned(self, rhs: u32) -> Self
pub const fn wrapping_sub_unsigned(self, rhs: u32) -> Self
1.0.0 (const: 1.32.0) · sourcepub const fn wrapping_mul(self, rhs: Self) -> Self
pub const fn wrapping_mul(self, rhs: Self) -> Self
1.2.0 (const: 1.52.0) · sourcepub const fn wrapping_div(self, rhs: Self) -> Self
pub const fn wrapping_div(self, rhs: Self) -> Self
Wrapping (modular) division. Computes self / rhs
, wrapping around at the
boundary of the type.
The only case where such wrapping can occur is when one divides MIN / -1
on a signed type (where
MIN
is the negative minimal value for the type); this is equivalent to -MIN
, a positive value
that is too large to represent in the type. In such a case, this function returns MIN
itself.
Panics
This function will panic if rhs
is 0.
Examples
Basic usage:
assert_eq!(100i32.wrapping_div(10), 10);
assert_eq!((-128i8).wrapping_div(-1), -128);
Run1.38.0 (const: 1.52.0) · sourcepub const fn wrapping_div_euclid(self, rhs: Self) -> Self
pub const fn wrapping_div_euclid(self, rhs: Self) -> Self
Wrapping Euclidean division. Computes self.div_euclid(rhs)
,
wrapping around at the boundary of the type.
Wrapping will only occur in MIN / -1
on a signed type (where MIN
is the negative minimal value
for the type). This is equivalent to -MIN
, a positive value that is too large to represent in the
type. In this case, this method returns MIN
itself.
Panics
This function will panic if rhs
is 0.
Examples
Basic usage:
assert_eq!(100i32.wrapping_div_euclid(10), 10);
assert_eq!((-128i8).wrapping_div_euclid(-1), -128);
Run1.2.0 (const: 1.52.0) · sourcepub const fn wrapping_rem(self, rhs: Self) -> Self
pub const fn wrapping_rem(self, rhs: Self) -> Self
Wrapping (modular) remainder. Computes self % rhs
, wrapping around at the
boundary of the type.
Such wrap-around never actually occurs mathematically; implementation artifacts make x % y
invalid for MIN / -1
on a signed type (where MIN
is the negative minimal value). In such a case,
this function returns 0
.
Panics
This function will panic if rhs
is 0.
Examples
Basic usage:
assert_eq!(100i32.wrapping_rem(10), 0);
assert_eq!((-128i8).wrapping_rem(-1), 0);
Run1.38.0 (const: 1.52.0) · sourcepub const fn wrapping_rem_euclid(self, rhs: Self) -> Self
pub const fn wrapping_rem_euclid(self, rhs: Self) -> Self
Wrapping Euclidean remainder. Computes self.rem_euclid(rhs)
, wrapping around
at the boundary of the type.
Wrapping will only occur in MIN % -1
on a signed type (where MIN
is the negative minimal value
for the type). In this case, this method returns 0.
Panics
This function will panic if rhs
is 0.
Examples
Basic usage:
assert_eq!(100i32.wrapping_rem_euclid(10), 0);
assert_eq!((-128i8).wrapping_rem_euclid(-1), 0);
Run1.2.0 (const: 1.32.0) · sourcepub const fn wrapping_neg(self) -> Self
pub const fn wrapping_neg(self) -> Self
Wrapping (modular) negation. Computes -self
, wrapping around at the boundary
of the type.
The only case where such wrapping can occur is when one negates MIN
on a signed type (where MIN
is the negative minimal value for the type); this is a positive value that is too large to represent
in the type. In such a case, this function returns MIN
itself.
Examples
Basic usage:
assert_eq!(100i32.wrapping_neg(), -100);
assert_eq!(i32::MIN.wrapping_neg(), i32::MIN);
Run1.2.0 (const: 1.32.0) · sourcepub const fn wrapping_shl(self, rhs: u32) -> Self
pub const fn wrapping_shl(self, rhs: u32) -> Self
Panic-free bitwise shift-left; yields self << mask(rhs)
, where mask
removes
any high-order bits of rhs
that would cause the shift to exceed the bitwidth of the type.
Note that this is not the same as a rotate-left; the RHS of a wrapping shift-left is restricted to
the range of the type, rather than the bits shifted out of the LHS being returned to the other end.
The primitive integer types all implement a rotate_left
function,
which may be what you want instead.
Examples
Basic usage:
assert_eq!((-1i32).wrapping_shl(7), -128);
assert_eq!((-1i32).wrapping_shl(128), -1);
Run1.2.0 (const: 1.32.0) · sourcepub const fn wrapping_shr(self, rhs: u32) -> Self
pub const fn wrapping_shr(self, rhs: u32) -> Self
Panic-free bitwise shift-right; yields self >> mask(rhs)
, where mask
removes any high-order bits of rhs
that would cause the shift to exceed the bitwidth of the type.
Note that this is not the same as a rotate-right; the RHS of a wrapping shift-right is restricted
to the range of the type, rather than the bits shifted out of the LHS being returned to the other
end. The primitive integer types all implement a rotate_right
function,
which may be what you want instead.
Examples
Basic usage:
assert_eq!((-128i32).wrapping_shr(7), -1);
assert_eq!((-128i16).wrapping_shr(64), -128);
Run1.13.0 (const: 1.32.0) · sourcepub const fn wrapping_abs(self) -> Self
pub const fn wrapping_abs(self) -> Self
Wrapping (modular) absolute value. Computes self.abs()
, wrapping around at
the boundary of the type.
The only case where such wrapping can occur is when one takes the absolute value of the negative
minimal value for the type; this is a positive value that is too large to represent in the type. In
such a case, this function returns MIN
itself.
Examples
Basic usage:
assert_eq!(100i32.wrapping_abs(), 100);
assert_eq!((-100i32).wrapping_abs(), 100);
assert_eq!(i32::MIN.wrapping_abs(), i32::MIN);
assert_eq!((-128i8).wrapping_abs() as u8, 128);
Run1.51.0 (const: 1.51.0) · sourcepub const fn unsigned_abs(self) -> u32
pub const fn unsigned_abs(self) -> u32
1.34.0 (const: 1.50.0) · sourcepub const fn wrapping_pow(self, exp: u32) -> Self
pub const fn wrapping_pow(self, exp: u32) -> Self
1.7.0 (const: 1.32.0) · sourcepub const fn overflowing_add(self, rhs: Self) -> (Self, bool)
pub const fn overflowing_add(self, rhs: Self) -> (Self, bool)
Calculates self
+ rhs
Returns a tuple of the addition along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.
Examples
Basic usage:
assert_eq!(5i32.overflowing_add(2), (7, false));
assert_eq!(i32::MAX.overflowing_add(1), (i32::MIN, true));
Runconst: unstable · sourcepub fn carrying_add(self, rhs: Self, carry: bool) -> (Self, bool)
🔬This is a nightly-only experimental API. (bigint_helper_methods
#85532)
pub fn carrying_add(self, rhs: Self, carry: bool) -> (Self, bool)
bigint_helper_methods
#85532)Calculates self
+ rhs
+ carry
and checks for overflow.
Performs “ternary addition” of two integer operands and a carry-in bit, and returns a tuple of the sum along with a boolean indicating whether an arithmetic overflow would occur. On overflow, the wrapped value is returned.
This allows chaining together multiple additions to create a wider
addition, and can be useful for bignum addition. This method should
only be used for the most significant word; for the less significant
words the unsigned method
u32::carrying_add
should be used.
The output boolean returned by this method is not a carry flag, and should not be added to a more significant word.
If the input carry is false, this method is equivalent to
overflowing_add
.
Examples
#![feature(bigint_helper_methods)]
// Only the most significant word is signed.
//
// 10 MAX (a = 10 × 2^32 + 2^32 - 1)
// + -5 9 (b = -5 × 2^32 + 9)
// ---------
// 6 8 (sum = 6 × 2^32 + 8)
let (a1, a0): (i32, u32) = (10, u32::MAX);
let (b1, b0): (i32, u32) = (-5, 9);
let carry0 = false;
// u32::carrying_add for the less significant words
let (sum0, carry1) = a0.carrying_add(b0, carry0);
assert_eq!(carry1, true);
// i32::carrying_add for the most significant word
let (sum1, overflow) = a1.carrying_add(b1, carry1);
assert_eq!(overflow, false);
assert_eq!((sum1, sum0), (6, 8));
Run1.66.0 (const: 1.66.0) · sourcepub const fn overflowing_add_unsigned(self, rhs: u32) -> (Self, bool)
pub const fn overflowing_add_unsigned(self, rhs: u32) -> (Self, bool)
Calculates self
+ rhs
with an unsigned rhs
Returns a tuple of the addition along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.
Examples
Basic usage:
assert_eq!(1i32.overflowing_add_unsigned(2), (3, false));
assert_eq!((i32::MIN).overflowing_add_unsigned(u32::MAX), (i32::MAX, false));
assert_eq!((i32::MAX - 2).overflowing_add_unsigned(3), (i32::MIN, true));
Run1.7.0 (const: 1.32.0) · sourcepub const fn overflowing_sub(self, rhs: Self) -> (Self, bool)
pub const fn overflowing_sub(self, rhs: Self) -> (Self, bool)
Calculates self
- rhs
Returns a tuple of the subtraction along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.
Examples
Basic usage:
assert_eq!(5i32.overflowing_sub(2), (3, false));
assert_eq!(i32::MIN.overflowing_sub(1), (i32::MAX, true));
Runconst: unstable · sourcepub fn borrowing_sub(self, rhs: Self, borrow: bool) -> (Self, bool)
🔬This is a nightly-only experimental API. (bigint_helper_methods
#85532)
pub fn borrowing_sub(self, rhs: Self, borrow: bool) -> (Self, bool)
bigint_helper_methods
#85532)Calculates self
− rhs
− borrow
and checks for
overflow.
Performs “ternary subtraction” by subtracting both an integer
operand and a borrow-in bit from self
, and returns a tuple of the
difference along with a boolean indicating whether an arithmetic
overflow would occur. On overflow, the wrapped value is returned.
This allows chaining together multiple subtractions to create a
wider subtraction, and can be useful for bignum subtraction. This
method should only be used for the most significant word; for the
less significant words the unsigned method
u32::borrowing_sub
should be used.
The output boolean returned by this method is not a borrow flag, and should not be subtracted from a more significant word.
If the input borrow is false, this method is equivalent to
overflowing_sub
.
Examples
#![feature(bigint_helper_methods)]
// Only the most significant word is signed.
//
// 6 8 (a = 6 × 2^32 + 8)
// - -5 9 (b = -5 × 2^32 + 9)
// ---------
// 10 MAX (diff = 10 × 2^32 + 2^32 - 1)
let (a1, a0): (i32, u32) = (6, 8);
let (b1, b0): (i32, u32) = (-5, 9);
let borrow0 = false;
// u32::borrowing_sub for the less significant words
let (diff0, borrow1) = a0.borrowing_sub(b0, borrow0);
assert_eq!(borrow1, true);
// i32::borrowing_sub for the most significant word
let (diff1, overflow) = a1.borrowing_sub(b1, borrow1);
assert_eq!(overflow, false);
assert_eq!((diff1, diff0), (10, u32::MAX));
Run1.66.0 (const: 1.66.0) · sourcepub const fn overflowing_sub_unsigned(self, rhs: u32) -> (Self, bool)
pub const fn overflowing_sub_unsigned(self, rhs: u32) -> (Self, bool)
Calculates self
- rhs
with an unsigned rhs
Returns a tuple of the subtraction along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.
Examples
Basic usage:
assert_eq!(1i32.overflowing_sub_unsigned(2), (-1, false));
assert_eq!((i32::MAX).overflowing_sub_unsigned(u32::MAX), (i32::MIN, false));
assert_eq!((i32::MIN + 2).overflowing_sub_unsigned(3), (i32::MAX, true));
Run1.7.0 (const: 1.32.0) · sourcepub const fn overflowing_mul(self, rhs: Self) -> (Self, bool)
pub const fn overflowing_mul(self, rhs: Self) -> (Self, bool)
Calculates the multiplication of self
and rhs
.
Returns a tuple of the multiplication along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.
Examples
Basic usage:
assert_eq!(5i32.overflowing_mul(2), (10, false));
assert_eq!(1_000_000_000i32.overflowing_mul(10), (1410065408, true));
Run1.7.0 (const: 1.52.0) · sourcepub const fn overflowing_div(self, rhs: Self) -> (Self, bool)
pub const fn overflowing_div(self, rhs: Self) -> (Self, bool)
Calculates the divisor when self
is divided by rhs
.
Returns a tuple of the divisor along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would occur then self is returned.
Panics
This function will panic if rhs
is 0.
Examples
Basic usage:
assert_eq!(5i32.overflowing_div(2), (2, false));
assert_eq!(i32::MIN.overflowing_div(-1), (i32::MIN, true));
Run1.38.0 (const: 1.52.0) · sourcepub const fn overflowing_div_euclid(self, rhs: Self) -> (Self, bool)
pub const fn overflowing_div_euclid(self, rhs: Self) -> (Self, bool)
Calculates the quotient of Euclidean division self.div_euclid(rhs)
.
Returns a tuple of the divisor along with a boolean indicating whether an arithmetic overflow would
occur. If an overflow would occur then self
is returned.
Panics
This function will panic if rhs
is 0.
Examples
Basic usage:
assert_eq!(5i32.overflowing_div_euclid(2), (2, false));
assert_eq!(i32::MIN.overflowing_div_euclid(-1), (i32::MIN, true));
Run1.7.0 (const: 1.52.0) · sourcepub const fn overflowing_rem(self, rhs: Self) -> (Self, bool)
pub const fn overflowing_rem(self, rhs: Self) -> (Self, bool)
Calculates the remainder when self
is divided by rhs
.
Returns a tuple of the remainder after dividing along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would occur then 0 is returned.
Panics
This function will panic if rhs
is 0.
Examples
Basic usage:
assert_eq!(5i32.overflowing_rem(2), (1, false));
assert_eq!(i32::MIN.overflowing_rem(-1), (0, true));
Run1.38.0 (const: 1.52.0) · sourcepub const fn overflowing_rem_euclid(self, rhs: Self) -> (Self, bool)
pub const fn overflowing_rem_euclid(self, rhs: Self) -> (Self, bool)
Overflowing Euclidean remainder. Calculates self.rem_euclid(rhs)
.
Returns a tuple of the remainder after dividing along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would occur then 0 is returned.
Panics
This function will panic if rhs
is 0.
Examples
Basic usage:
assert_eq!(5i32.overflowing_rem_euclid(2), (1, false));
assert_eq!(i32::MIN.overflowing_rem_euclid(-1), (0, true));
Run1.7.0 (const: 1.32.0) · sourcepub const fn overflowing_neg(self) -> (Self, bool)
pub const fn overflowing_neg(self) -> (Self, bool)
Negates self, overflowing if this is equal to the minimum value.
Returns a tuple of the negated version of self along with a boolean indicating whether an overflow
happened. If self
is the minimum value (e.g., i32::MIN
for values of type i32
), then the
minimum value will be returned again and true
will be returned for an overflow happening.
Examples
Basic usage:
assert_eq!(2i32.overflowing_neg(), (-2, false));
assert_eq!(i32::MIN.overflowing_neg(), (i32::MIN, true));
Run1.7.0 (const: 1.32.0) · sourcepub const fn overflowing_shl(self, rhs: u32) -> (Self, bool)
pub const fn overflowing_shl(self, rhs: u32) -> (Self, bool)
Shifts self left by rhs
bits.
Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.
Examples
Basic usage:
assert_eq!(0x1i32.overflowing_shl(4), (0x10, false));
assert_eq!(0x1i32.overflowing_shl(36), (0x10, true));
Run1.7.0 (const: 1.32.0) · sourcepub const fn overflowing_shr(self, rhs: u32) -> (Self, bool)
pub const fn overflowing_shr(self, rhs: u32) -> (Self, bool)
Shifts self right by rhs
bits.
Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.
Examples
Basic usage:
assert_eq!(0x10i32.overflowing_shr(4), (0x1, false));
assert_eq!(0x10i32.overflowing_shr(36), (0x1, true));
Run1.13.0 (const: 1.32.0) · sourcepub const fn overflowing_abs(self) -> (Self, bool)
pub const fn overflowing_abs(self) -> (Self, bool)
Computes the absolute value of self
.
Returns a tuple of the absolute version of self along with a boolean indicating whether an overflow happened. If self is the minimum value (e.g., i32::MIN for values of type i32), then the minimum value will be returned again and true will be returned for an overflow happening.
Examples
Basic usage:
assert_eq!(10i32.overflowing_abs(), (10, false));
assert_eq!((-10i32).overflowing_abs(), (10, false));
assert_eq!((i32::MIN).overflowing_abs(), (i32::MIN, true));
Run1.34.0 (const: 1.50.0) · sourcepub const fn overflowing_pow(self, exp: u32) -> (Self, bool)
pub const fn overflowing_pow(self, exp: u32) -> (Self, bool)
const: unstable · sourcepub fn isqrt(self) -> Self
🔬This is a nightly-only experimental API. (isqrt
#116226)
pub fn isqrt(self) -> Self
isqrt
#116226)1.38.0 (const: 1.52.0) · sourcepub const fn div_euclid(self, rhs: Self) -> Self
pub const fn div_euclid(self, rhs: Self) -> Self
Calculates the quotient of Euclidean division of self
by rhs
.
This computes the integer q
such that self = q * rhs + r
, with
r = self.rem_euclid(rhs)
and 0 <= r < abs(rhs)
.
In other words, the result is self / rhs
rounded to the integer q
such that self >= q * rhs
.
If self > 0
, this is equal to round towards zero (the default in Rust);
if self < 0
, this is equal to round towards +/- infinity.
Panics
This function will panic if rhs
is 0 or the division results in overflow.
Examples
Basic usage:
let a: i32 = 7; // or any other integer type
let b = 4;
assert_eq!(a.div_euclid(b), 1); // 7 >= 4 * 1
assert_eq!(a.div_euclid(-b), -1); // 7 >= -4 * -1
assert_eq!((-a).div_euclid(b), -2); // -7 >= 4 * -2
assert_eq!((-a).div_euclid(-b), 2); // -7 >= -4 * 2
Run1.38.0 (const: 1.52.0) · sourcepub const fn rem_euclid(self, rhs: Self) -> Self
pub const fn rem_euclid(self, rhs: Self) -> Self
Calculates the least nonnegative remainder of self (mod rhs)
.
This is done as if by the Euclidean division algorithm – given
r = self.rem_euclid(rhs)
, self = rhs * self.div_euclid(rhs) + r
, and
0 <= r < abs(rhs)
.
Panics
This function will panic if rhs
is 0 or the division results in overflow.
Examples
Basic usage:
let a: i32 = 7; // or any other integer type
let b = 4;
assert_eq!(a.rem_euclid(b), 3);
assert_eq!((-a).rem_euclid(b), 1);
assert_eq!(a.rem_euclid(-b), 3);
assert_eq!((-a).rem_euclid(-b), 1);
Runsourcepub const fn div_floor(self, rhs: Self) -> Self
🔬This is a nightly-only experimental API. (int_roundings
#88581)
pub const fn div_floor(self, rhs: Self) -> Self
int_roundings
#88581)Calculates the quotient of self
and rhs
, rounding the result towards negative infinity.
Panics
This function will panic if rhs
is zero.
Overflow behavior
On overflow, this function will panic if overflow checks are enabled (default in debug mode) and wrap if overflow checks are disabled (default in release mode).
Examples
Basic usage:
#![feature(int_roundings)]
let a: i32 = 8;
let b = 3;
assert_eq!(a.div_floor(b), 2);
assert_eq!(a.div_floor(-b), -3);
assert_eq!((-a).div_floor(b), -3);
assert_eq!((-a).div_floor(-b), 2);
Runsourcepub const fn div_ceil(self, rhs: Self) -> Self
🔬This is a nightly-only experimental API. (int_roundings
#88581)
pub const fn div_ceil(self, rhs: Self) -> Self
int_roundings
#88581)Calculates the quotient of self
and rhs
, rounding the result towards positive infinity.
Panics
This function will panic if rhs
is zero.
Overflow behavior
On overflow, this function will panic if overflow checks are enabled (default in debug mode) and wrap if overflow checks are disabled (default in release mode).
Examples
Basic usage:
#![feature(int_roundings)]
let a: i32 = 8;
let b = 3;
assert_eq!(a.div_ceil(b), 3);
assert_eq!(a.div_ceil(-b), -2);
assert_eq!((-a).div_ceil(b), -2);
assert_eq!((-a).div_ceil(-b), 3);
Runsourcepub const fn next_multiple_of(self, rhs: Self) -> Self
🔬This is a nightly-only experimental API. (int_roundings
#88581)
pub const fn next_multiple_of(self, rhs: Self) -> Self
int_roundings
#88581)If rhs
is positive, calculates the smallest value greater than or
equal to self
that is a multiple of rhs
. If rhs
is negative,
calculates the largest value less than or equal to self
that is a
multiple of rhs
.
Panics
This function will panic if rhs
is zero.
Overflow behavior
On overflow, this function will panic if overflow checks are enabled (default in debug mode) and wrap if overflow checks are disabled (default in release mode).
Examples
Basic usage:
#![feature(int_roundings)]
assert_eq!(16_i32.next_multiple_of(8), 16);
assert_eq!(23_i32.next_multiple_of(8), 24);
assert_eq!(16_i32.next_multiple_of(-8), 16);
assert_eq!(23_i32.next_multiple_of(-8), 16);
assert_eq!((-16_i32).next_multiple_of(8), -16);
assert_eq!((-23_i32).next_multiple_of(8), -16);
assert_eq!((-16_i32).next_multiple_of(-8), -16);
assert_eq!((-23_i32).next_multiple_of(-8), -24);
Runsourcepub const fn checked_next_multiple_of(self, rhs: Self) -> Option<Self>
🔬This is a nightly-only experimental API. (int_roundings
#88581)
pub const fn checked_next_multiple_of(self, rhs: Self) -> Option<Self>
int_roundings
#88581)If rhs
is positive, calculates the smallest value greater than or
equal to self
that is a multiple of rhs
. If rhs
is negative,
calculates the largest value less than or equal to self
that is a
multiple of rhs
. Returns None
if rhs
is zero or the operation
would result in overflow.
Examples
Basic usage:
#![feature(int_roundings)]
assert_eq!(16_i32.checked_next_multiple_of(8), Some(16));
assert_eq!(23_i32.checked_next_multiple_of(8), Some(24));
assert_eq!(16_i32.checked_next_multiple_of(-8), Some(16));
assert_eq!(23_i32.checked_next_multiple_of(-8), Some(16));
assert_eq!((-16_i32).checked_next_multiple_of(8), Some(-16));
assert_eq!((-23_i32).checked_next_multiple_of(8), Some(-16));
assert_eq!((-16_i32).checked_next_multiple_of(-8), Some(-16));
assert_eq!((-23_i32).checked_next_multiple_of(-8), Some(-24));
assert_eq!(1_i32.checked_next_multiple_of(0), None);
assert_eq!(i32::MAX.checked_next_multiple_of(2), None);
Runconst: unstable · sourcepub fn midpoint(self, rhs: Self) -> Self
🔬This is a nightly-only experimental API. (num_midpoint
#110840)
pub fn midpoint(self, rhs: Self) -> Self
num_midpoint
#110840)Calculates the middle point of self
and rhs
.
midpoint(a, b)
is (a + b) >> 1
as if it were performed in a
sufficiently-large signed integral type. This implies that the result is
always rounded towards negative infinity and that no overflow will ever occur.
Examples
#![feature(num_midpoint)]
assert_eq!(0i32.midpoint(4), 2);
assert_eq!(0i32.midpoint(-1), -1);
assert_eq!((-1i32).midpoint(0), -1);
Run1.67.0 (const: 1.67.0) · sourcepub const fn ilog(self, base: Self) -> u32
pub const fn ilog(self, base: Self) -> u32
Returns the logarithm of the number with respect to an arbitrary base, rounded down.
This method might not be optimized owing to implementation details;
ilog2
can produce results more efficiently for base 2, and ilog10
can produce results more efficiently for base 10.
Panics
This function will panic if self
is less than or equal to zero,
or if base
is less than 2.
Examples
assert_eq!(5i32.ilog(5), 1);
Run1.67.0 (const: 1.67.0) · sourcepub const fn checked_ilog(self, base: Self) -> Option<u32>
pub const fn checked_ilog(self, base: Self) -> Option<u32>
Returns the logarithm of the number with respect to an arbitrary base, rounded down.
Returns None
if the number is negative or zero, or if the base is not at least 2.
This method might not be optimized owing to implementation details;
checked_ilog2
can produce results more efficiently for base 2, and
checked_ilog10
can produce results more efficiently for base 10.
Examples
assert_eq!(5i32.checked_ilog(5), Some(1));
Run1.67.0 (const: 1.67.0) · sourcepub const fn checked_ilog2(self) -> Option<u32>
pub const fn checked_ilog2(self) -> Option<u32>
1.67.0 (const: 1.67.0) · sourcepub const fn checked_ilog10(self) -> Option<u32>
pub const fn checked_ilog10(self) -> Option<u32>
1.0.0 (const: 1.32.0) · sourcepub const fn abs(self) -> Self
pub const fn abs(self) -> Self
Computes the absolute value of self
.
Overflow behavior
The absolute value of
i32::MIN
cannot be represented as an
i32
,
and attempting to calculate it will cause an overflow. This means
that code in debug mode will trigger a panic on this case and
optimized code will return
i32::MIN
without a panic.
Examples
Basic usage:
assert_eq!(10i32.abs(), 10);
assert_eq!((-10i32).abs(), 10);
Run1.60.0 (const: 1.60.0) · sourcepub const fn abs_diff(self, other: Self) -> u32
pub const fn abs_diff(self, other: Self) -> u32
Computes the absolute difference between self
and other
.
This function always returns the correct answer without overflow or panics by returning an unsigned integer.
Examples
Basic usage:
assert_eq!(100i32.abs_diff(80), 20u32);
assert_eq!(100i32.abs_diff(110), 10u32);
assert_eq!((-100i32).abs_diff(80), 180u32);
assert_eq!((-100i32).abs_diff(-120), 20u32);
assert_eq!(i32::MIN.abs_diff(i32::MAX), u32::MAX);
Run1.0.0 (const: 1.32.0) · sourcepub const fn is_positive(self) -> bool
pub const fn is_positive(self) -> bool
1.0.0 (const: 1.32.0) · sourcepub const fn is_negative(self) -> bool
pub const fn is_negative(self) -> bool
1.32.0 (const: 1.44.0) · sourcepub const fn to_be_bytes(self) -> [u8; 4]
pub const fn to_be_bytes(self) -> [u8; 4]
1.32.0 (const: 1.44.0) · sourcepub const fn to_le_bytes(self) -> [u8; 4]
pub const fn to_le_bytes(self) -> [u8; 4]
1.32.0 (const: 1.44.0) · sourcepub const fn to_ne_bytes(self) -> [u8; 4]
pub const fn to_ne_bytes(self) -> [u8; 4]
Return the memory representation of this integer as a byte array in native byte order.
As the target platform’s native endianness is used, portable code
should use to_be_bytes
or to_le_bytes
, as appropriate,
instead.
Examples
let bytes = 0x12345678i32.to_ne_bytes();
assert_eq!(
bytes,
if cfg!(target_endian = "big") {
[0x12, 0x34, 0x56, 0x78]
} else {
[0x78, 0x56, 0x34, 0x12]
}
);
Run1.32.0 (const: 1.44.0) · sourcepub const fn from_be_bytes(bytes: [u8; 4]) -> Self
pub const fn from_be_bytes(bytes: [u8; 4]) -> Self
Create an integer value from its representation as a byte array in big endian.
Examples
let value = i32::from_be_bytes([0x12, 0x34, 0x56, 0x78]);
assert_eq!(value, 0x12345678);
RunWhen starting from a slice rather than an array, fallible conversion APIs can be used:
fn read_be_i32(input: &mut &[u8]) -> i32 {
let (int_bytes, rest) = input.split_at(std::mem::size_of::<i32>());
*input = rest;
i32::from_be_bytes(int_bytes.try_into().unwrap())
}
Run1.32.0 (const: 1.44.0) · sourcepub const fn from_le_bytes(bytes: [u8; 4]) -> Self
pub const fn from_le_bytes(bytes: [u8; 4]) -> Self
Create an integer value from its representation as a byte array in little endian.
Examples
let value = i32::from_le_bytes([0x78, 0x56, 0x34, 0x12]);
assert_eq!(value, 0x12345678);
RunWhen starting from a slice rather than an array, fallible conversion APIs can be used:
fn read_le_i32(input: &mut &[u8]) -> i32 {
let (int_bytes, rest) = input.split_at(std::mem::size_of::<i32>());
*input = rest;
i32::from_le_bytes(int_bytes.try_into().unwrap())
}
Run1.32.0 (const: 1.44.0) · sourcepub const fn from_ne_bytes(bytes: [u8; 4]) -> Self
pub const fn from_ne_bytes(bytes: [u8; 4]) -> Self
Create an integer value from its memory representation as a byte array in native endianness.
As the target platform’s native endianness is used, portable code
likely wants to use from_be_bytes
or from_le_bytes
, as
appropriate instead.
Examples
let value = i32::from_ne_bytes(if cfg!(target_endian = "big") {
[0x12, 0x34, 0x56, 0x78]
} else {
[0x78, 0x56, 0x34, 0x12]
});
assert_eq!(value, 0x12345678);
RunWhen starting from a slice rather than an array, fallible conversion APIs can be used:
fn read_ne_i32(input: &mut &[u8]) -> i32 {
let (int_bytes, rest) = input.split_at(std::mem::size_of::<i32>());
*input = rest;
i32::from_ne_bytes(int_bytes.try_into().unwrap())
}
RunTrait Implementations§
1.22.0 · source§impl AddAssign<&i32> for i32
impl AddAssign<&i32> for i32
source§fn add_assign(&mut self, other: &i32)
fn add_assign(&mut self, other: &i32)
+=
operation. Read more1.8.0 · source§impl AddAssign<i32> for i32
impl AddAssign<i32> for i32
source§fn add_assign(&mut self, other: i32)
fn add_assign(&mut self, other: i32)
+=
operation. Read more1.22.0 · source§impl BitAndAssign<&i32> for i32
impl BitAndAssign<&i32> for i32
source§fn bitand_assign(&mut self, other: &i32)
fn bitand_assign(&mut self, other: &i32)
&=
operation. Read more1.8.0 · source§impl BitAndAssign<i32> for i32
impl BitAndAssign<i32> for i32
source§fn bitand_assign(&mut self, other: i32)
fn bitand_assign(&mut self, other: i32)
&=
operation. Read more1.45.0 · source§impl BitOr<NonZeroI32> for i32
impl BitOr<NonZeroI32> for i32
§type Output = NonZeroI32
type Output = NonZeroI32
|
operator.1.22.0 · source§impl BitOrAssign<&i32> for i32
impl BitOrAssign<&i32> for i32
source§fn bitor_assign(&mut self, other: &i32)
fn bitor_assign(&mut self, other: &i32)
|=
operation. Read more1.8.0 · source§impl BitOrAssign<i32> for i32
impl BitOrAssign<i32> for i32
source§fn bitor_assign(&mut self, other: i32)
fn bitor_assign(&mut self, other: i32)
|=
operation. Read more1.22.0 · source§impl BitXorAssign<&i32> for i32
impl BitXorAssign<&i32> for i32
source§fn bitxor_assign(&mut self, other: &i32)
fn bitxor_assign(&mut self, other: &i32)
^=
operation. Read more1.8.0 · source§impl BitXorAssign<i32> for i32
impl BitXorAssign<i32> for i32
source§fn bitxor_assign(&mut self, other: i32)
fn bitxor_assign(&mut self, other: i32)
^=
operation. Read more1.0.0 · source§impl Div<i32> for i32
impl Div<i32> for i32
This operation rounds towards zero, truncating any fractional part of the exact result.
Panics
This operation will panic if other == 0
or the division results in overflow.
1.22.0 · source§impl DivAssign<&i32> for i32
impl DivAssign<&i32> for i32
source§fn div_assign(&mut self, other: &i32)
fn div_assign(&mut self, other: &i32)
/=
operation. Read more1.8.0 · source§impl DivAssign<i32> for i32
impl DivAssign<i32> for i32
source§fn div_assign(&mut self, other: i32)
fn div_assign(&mut self, other: i32)
/=
operation. Read more1.31.0 · source§impl From<NonZeroI32> for i32
impl From<NonZeroI32> for i32
source§fn from(nonzero: NonZeroI32) -> Self
fn from(nonzero: NonZeroI32) -> Self
Converts a NonZeroI32
into an i32
1.0.0 · source§impl FromStr for i32
impl FromStr for i32
§type Err = ParseIntError
type Err = ParseIntError
1.22.0 · source§impl MulAssign<&i32> for i32
impl MulAssign<&i32> for i32
source§fn mul_assign(&mut self, other: &i32)
fn mul_assign(&mut self, other: &i32)
*=
operation. Read more1.8.0 · source§impl MulAssign<i32> for i32
impl MulAssign<i32> for i32
source§fn mul_assign(&mut self, other: i32)
fn mul_assign(&mut self, other: i32)
*=
operation. Read more1.0.0 · source§impl Ord for i32
impl Ord for i32
1.0.0 · source§impl PartialOrd<i32> for i32
impl PartialOrd<i32> for i32
source§fn le(&self, other: &i32) -> bool
fn le(&self, other: &i32) -> bool
self
and other
) and is used by the <=
operator. Read more1.0.0 · source§impl Rem<i32> for i32
impl Rem<i32> for i32
This operation satisfies n % d == n - (n / d) * d
. The
result has the same sign as the left operand.
Panics
This operation will panic if other == 0
or if self / other
results in overflow.
1.22.0 · source§impl RemAssign<&i32> for i32
impl RemAssign<&i32> for i32
source§fn rem_assign(&mut self, other: &i32)
fn rem_assign(&mut self, other: &i32)
%=
operation. Read more1.8.0 · source§impl RemAssign<i32> for i32
impl RemAssign<i32> for i32
source§fn rem_assign(&mut self, other: i32)
fn rem_assign(&mut self, other: i32)
%=
operation. Read more1.22.0 · source§impl ShlAssign<&i128> for i32
impl ShlAssign<&i128> for i32
source§fn shl_assign(&mut self, other: &i128)
fn shl_assign(&mut self, other: &i128)
<<=
operation. Read more1.22.0 · source§impl ShlAssign<&i16> for i32
impl ShlAssign<&i16> for i32
source§fn shl_assign(&mut self, other: &i16)
fn shl_assign(&mut self, other: &i16)
<<=
operation. Read more1.22.0 · source§impl ShlAssign<&i32> for i32
impl ShlAssign<&i32> for i32
source§fn shl_assign(&mut self, other: &i32)
fn shl_assign(&mut self, other: &i32)
<<=
operation. Read more1.22.0 · source§impl ShlAssign<&i64> for i32
impl ShlAssign<&i64> for i32
source§fn shl_assign(&mut self, other: &i64)
fn shl_assign(&mut self, other: &i64)
<<=
operation. Read more1.22.0 · source§impl ShlAssign<&i8> for i32
impl ShlAssign<&i8> for i32
source§fn shl_assign(&mut self, other: &i8)
fn shl_assign(&mut self, other: &i8)
<<=
operation. Read more1.22.0 · source§impl ShlAssign<&isize> for i32
impl ShlAssign<&isize> for i32
source§fn shl_assign(&mut self, other: &isize)
fn shl_assign(&mut self, other: &isize)
<<=
operation. Read more1.22.0 · source§impl ShlAssign<&u128> for i32
impl ShlAssign<&u128> for i32
source§fn shl_assign(&mut self, other: &u128)
fn shl_assign(&mut self, other: &u128)
<<=
operation. Read more1.22.0 · source§impl ShlAssign<&u16> for i32
impl ShlAssign<&u16> for i32
source§fn shl_assign(&mut self, other: &u16)
fn shl_assign(&mut self, other: &u16)
<<=
operation. Read more1.22.0 · source§impl ShlAssign<&u32> for i32
impl ShlAssign<&u32> for i32
source§fn shl_assign(&mut self, other: &u32)
fn shl_assign(&mut self, other: &u32)
<<=
operation. Read more1.22.0 · source§impl ShlAssign<&u64> for i32
impl ShlAssign<&u64> for i32
source§fn shl_assign(&mut self, other: &u64)
fn shl_assign(&mut self, other: &u64)
<<=
operation. Read more1.22.0 · source§impl ShlAssign<&u8> for i32
impl ShlAssign<&u8> for i32
source§fn shl_assign(&mut self, other: &u8)
fn shl_assign(&mut self, other: &u8)
<<=
operation. Read more1.22.0 · source§impl ShlAssign<&usize> for i32
impl ShlAssign<&usize> for i32
source§fn shl_assign(&mut self, other: &usize)
fn shl_assign(&mut self, other: &usize)
<<=
operation. Read more1.8.0 · source§impl ShlAssign<i128> for i32
impl ShlAssign<i128> for i32
source§fn shl_assign(&mut self, other: i128)
fn shl_assign(&mut self, other: i128)
<<=
operation. Read more1.8.0 · source§impl ShlAssign<i16> for i32
impl ShlAssign<i16> for i32
source§fn shl_assign(&mut self, other: i16)
fn shl_assign(&mut self, other: i16)
<<=
operation. Read more1.8.0 · source§impl ShlAssign<i32> for i32
impl ShlAssign<i32> for i32
source§fn shl_assign(&mut self, other: i32)
fn shl_assign(&mut self, other: i32)
<<=
operation. Read more1.8.0 · source§impl ShlAssign<i64> for i32
impl ShlAssign<i64> for i32
source§fn shl_assign(&mut self, other: i64)
fn shl_assign(&mut self, other: i64)
<<=
operation. Read more1.8.0 · source§impl ShlAssign<i8> for i32
impl ShlAssign<i8> for i32
source§fn shl_assign(&mut self, other: i8)
fn shl_assign(&mut self, other: i8)
<<=
operation. Read more1.8.0 · source§impl ShlAssign<isize> for i32
impl ShlAssign<isize> for i32
source§fn shl_assign(&mut self, other: isize)
fn shl_assign(&mut self, other: isize)
<<=
operation. Read more1.8.0 · source§impl ShlAssign<u128> for i32
impl ShlAssign<u128> for i32
source§fn shl_assign(&mut self, other: u128)
fn shl_assign(&mut self, other: u128)
<<=
operation. Read more1.8.0 · source§impl ShlAssign<u16> for i32
impl ShlAssign<u16> for i32
source§fn shl_assign(&mut self, other: u16)
fn shl_assign(&mut self, other: u16)
<<=
operation. Read more1.8.0 · source§impl ShlAssign<u32> for i32
impl ShlAssign<u32> for i32
source§fn shl_assign(&mut self, other: u32)
fn shl_assign(&mut self, other: u32)
<<=
operation. Read more1.8.0 · source§impl ShlAssign<u64> for i32
impl ShlAssign<u64> for i32
source§fn shl_assign(&mut self, other: u64)
fn shl_assign(&mut self, other: u64)
<<=
operation. Read more1.8.0 · source§impl ShlAssign<u8> for i32
impl ShlAssign<u8> for i32
source§fn shl_assign(&mut self, other: u8)
fn shl_assign(&mut self, other: u8)
<<=
operation. Read more1.8.0 · source§impl ShlAssign<usize> for i32
impl ShlAssign<usize> for i32
source§fn shl_assign(&mut self, other: usize)
fn shl_assign(&mut self, other: usize)
<<=
operation. Read more1.22.0 · source§impl ShrAssign<&i128> for i32
impl ShrAssign<&i128> for i32
source§fn shr_assign(&mut self, other: &i128)
fn shr_assign(&mut self, other: &i128)
>>=
operation. Read more1.22.0 · source§impl ShrAssign<&i16> for i32
impl ShrAssign<&i16> for i32
source§fn shr_assign(&mut self, other: &i16)
fn shr_assign(&mut self, other: &i16)
>>=
operation. Read more1.22.0 · source§impl ShrAssign<&i32> for i32
impl ShrAssign<&i32> for i32
source§fn shr_assign(&mut self, other: &i32)
fn shr_assign(&mut self, other: &i32)
>>=
operation. Read more1.22.0 · source§impl ShrAssign<&i64> for i32
impl ShrAssign<&i64> for i32
source§fn shr_assign(&mut self, other: &i64)
fn shr_assign(&mut self, other: &i64)
>>=
operation. Read more1.22.0 · source§impl ShrAssign<&i8> for i32
impl ShrAssign<&i8> for i32
source§fn shr_assign(&mut self, other: &i8)
fn shr_assign(&mut self, other: &i8)
>>=
operation. Read more1.22.0 · source§impl ShrAssign<&isize> for i32
impl ShrAssign<&isize> for i32
source§fn shr_assign(&mut self, other: &isize)
fn shr_assign(&mut self, other: &isize)
>>=
operation. Read more1.22.0 · source§impl ShrAssign<&u128> for i32
impl ShrAssign<&u128> for i32
source§fn shr_assign(&mut self, other: &u128)
fn shr_assign(&mut self, other: &u128)
>>=
operation. Read more1.22.0 · source§impl ShrAssign<&u16> for i32
impl ShrAssign<&u16> for i32
source§fn shr_assign(&mut self, other: &u16)
fn shr_assign(&mut self, other: &u16)
>>=
operation. Read more1.22.0 · source§impl ShrAssign<&u32> for i32
impl ShrAssign<&u32> for i32
source§fn shr_assign(&mut self, other: &u32)
fn shr_assign(&mut self, other: &u32)
>>=
operation. Read more1.22.0 · source§impl ShrAssign<&u64> for i32
impl ShrAssign<&u64> for i32
source§fn shr_assign(&mut self, other: &u64)
fn shr_assign(&mut self, other: &u64)
>>=
operation. Read more1.22.0 · source§impl ShrAssign<&u8> for i32
impl ShrAssign<&u8> for i32
source§fn shr_assign(&mut self, other: &u8)
fn shr_assign(&mut self, other: &u8)
>>=
operation. Read more1.22.0 · source§impl ShrAssign<&usize> for i32
impl ShrAssign<&usize> for i32
source§fn shr_assign(&mut self, other: &usize)
fn shr_assign(&mut self, other: &usize)
>>=
operation. Read more1.8.0 · source§impl ShrAssign<i128> for i32
impl ShrAssign<i128> for i32
source§fn shr_assign(&mut self, other: i128)
fn shr_assign(&mut self, other: i128)
>>=
operation. Read more1.8.0 · source§impl ShrAssign<i16> for i32
impl ShrAssign<i16> for i32
source§fn shr_assign(&mut self, other: i16)
fn shr_assign(&mut self, other: i16)
>>=
operation. Read more1.8.0 · source§impl ShrAssign<i32> for i32
impl ShrAssign<i32> for i32
source§fn shr_assign(&mut self, other: i32)
fn shr_assign(&mut self, other: i32)
>>=
operation. Read more1.8.0 · source§impl ShrAssign<i64> for i32
impl ShrAssign<i64> for i32
source§fn shr_assign(&mut self, other: i64)
fn shr_assign(&mut self, other: i64)
>>=
operation. Read more1.8.0 · source§impl ShrAssign<i8> for i32
impl ShrAssign<i8> for i32
source§fn shr_assign(&mut self, other: i8)
fn shr_assign(&mut self, other: i8)
>>=
operation. Read more1.8.0 · source§impl ShrAssign<isize> for i32
impl ShrAssign<isize> for i32
source§fn shr_assign(&mut self, other: isize)
fn shr_assign(&mut self, other: isize)
>>=
operation. Read more1.8.0 · source§impl ShrAssign<u128> for i32
impl ShrAssign<u128> for i32
source§fn shr_assign(&mut self, other: u128)
fn shr_assign(&mut self, other: u128)
>>=
operation. Read more1.8.0 · source§impl ShrAssign<u16> for i32
impl ShrAssign<u16> for i32
source§fn shr_assign(&mut self, other: u16)
fn shr_assign(&mut self, other: u16)
>>=
operation. Read more1.8.0 · source§impl ShrAssign<u32> for i32
impl ShrAssign<u32> for i32
source§fn shr_assign(&mut self, other: u32)
fn shr_assign(&mut self, other: u32)
>>=
operation. Read more1.8.0 · source§impl ShrAssign<u64> for i32
impl ShrAssign<u64> for i32
source§fn shr_assign(&mut self, other: u64)
fn shr_assign(&mut self, other: u64)
>>=
operation. Read more1.8.0 · source§impl ShrAssign<u8> for i32
impl ShrAssign<u8> for i32
source§fn shr_assign(&mut self, other: u8)
fn shr_assign(&mut self, other: u8)
>>=
operation. Read more1.8.0 · source§impl ShrAssign<usize> for i32
impl ShrAssign<usize> for i32
source§fn shr_assign(&mut self, other: usize)
fn shr_assign(&mut self, other: usize)
>>=
operation. Read moresource§impl SimdElement for i32
impl SimdElement for i32
source§impl Step for i32
impl Step for i32
source§unsafe fn forward_unchecked(start: Self, n: usize) -> Self
unsafe fn forward_unchecked(start: Self, n: usize) -> Self
step_trait
#42168)source§unsafe fn backward_unchecked(start: Self, n: usize) -> Self
unsafe fn backward_unchecked(start: Self, n: usize) -> Self
step_trait
#42168)source§fn forward(start: Self, n: usize) -> Self
fn forward(start: Self, n: usize) -> Self
step_trait
#42168)source§fn backward(start: Self, n: usize) -> Self
fn backward(start: Self, n: usize) -> Self
step_trait
#42168)source§fn steps_between(start: &Self, end: &Self) -> Option<usize>
fn steps_between(start: &Self, end: &Self) -> Option<usize>
step_trait
#42168)1.22.0 · source§impl SubAssign<&i32> for i32
impl SubAssign<&i32> for i32
source§fn sub_assign(&mut self, other: &i32)
fn sub_assign(&mut self, other: &i32)
-=
operation. Read more1.8.0 · source§impl SubAssign<i32> for i32
impl SubAssign<i32> for i32
source§fn sub_assign(&mut self, other: i32)
fn sub_assign(&mut self, other: i32)
-=
operation. Read more