1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
use crate::simd::{
    intrinsics, LaneCount, Mask, MaskElement, SimdConstPtr, SimdMutPtr, SimdPartialOrd,
    SupportedLaneCount, Swizzle,
};
use core::convert::{TryFrom, TryInto};

/// A SIMD vector with the shape of `[T; N]` but the operations of `T`.
///
/// `Simd<T, N>` supports the operators (+, *, etc.) that `T` does in "elementwise" fashion.
/// These take the element at each index from the left-hand side and right-hand side,
/// perform the operation, then return the result in the same index in a vector of equal size.
/// However, `Simd` differs from normal iteration and normal arrays:
/// - `Simd<T, N>` executes `N` operations in a single step with no `break`s
/// - `Simd<T, N>` can have an alignment greater than `T`, for better mechanical sympathy
///
/// By always imposing these constraints on `Simd`, it is easier to compile elementwise operations
/// into machine instructions that can themselves be executed in parallel.
///
/// ```rust
/// # #![feature(portable_simd)]
/// # use core::simd::{Simd};
/// # use core::array;
/// let a: [i32; 4] = [-2, 0, 2, 4];
/// let b = [10, 9, 8, 7];
/// let sum = array::from_fn(|i| a[i] + b[i]);
/// let prod = array::from_fn(|i| a[i] * b[i]);
///
/// // `Simd<T, N>` implements `From<[T; N]>`
/// let (v, w) = (Simd::from(a), Simd::from(b));
/// // Which means arrays implement `Into<Simd<T, N>>`.
/// assert_eq!(v + w, sum.into());
/// assert_eq!(v * w, prod.into());
/// ```
///
///
/// `Simd` with integer elements treats operators as wrapping, as if `T` was [`Wrapping<T>`].
/// Thus, `Simd` does not implement `wrapping_add`, because that is the default behavior.
/// This means there is no warning on overflows, even in "debug" builds.
/// For most applications where `Simd` is appropriate, it is "not a bug" to wrap,
/// and even "debug builds" are unlikely to tolerate the loss of performance.
/// You may want to consider using explicitly checked arithmetic if such is required.
/// Division by zero on integers still causes a panic, so
/// you may want to consider using `f32` or `f64` if that is unacceptable.
///
/// [`Wrapping<T>`]: core::num::Wrapping
///
/// # Layout
/// `Simd<T, N>` has a layout similar to `[T; N]` (identical "shapes"), with a greater alignment.
/// `[T; N]` is aligned to `T`, but `Simd<T, N>` will have an alignment based on both `T` and `N`.
/// Thus it is sound to [`transmute`] `Simd<T, N>` to `[T; N]` and should optimize to "zero cost",
/// but the reverse transmutation may require a copy the compiler cannot simply elide.
///
/// # ABI "Features"
/// Due to Rust's safety guarantees, `Simd<T, N>` is currently passed and returned via memory,
/// not SIMD registers, except as an optimization. Using `#[inline]` on functions that accept
/// `Simd<T, N>` or return it is recommended, at the cost of code generation time, as
/// inlining SIMD-using functions can omit a large function prolog or epilog and thus
/// improve both speed and code size. The need for this may be corrected in the future.
///
/// Using `#[inline(always)]` still requires additional care.
///
/// # Safe SIMD with Unsafe Rust
///
/// Operations with `Simd` are typically safe, but there are many reasons to want to combine SIMD with `unsafe` code.
/// Care must be taken to respect differences between `Simd` and other types it may be transformed into or derived from.
/// In particular, the layout of `Simd<T, N>` may be similar to `[T; N]`, and may allow some transmutations,
/// but references to `[T; N]` are not interchangeable with those to `Simd<T, N>`.
/// Thus, when using `unsafe` Rust to read and write `Simd<T, N>` through [raw pointers], it is a good idea to first try with
/// [`read_unaligned`] and [`write_unaligned`]. This is because:
/// - [`read`] and [`write`] require full alignment (in this case, `Simd<T, N>`'s alignment)
/// - `Simd<T, N>` is often read from or written to [`[T]`](slice) and other types aligned to `T`
/// - combining these actions violates the `unsafe` contract and explodes the program into
///   a puff of **undefined behavior**
/// - the compiler can implicitly adjust layouts to make unaligned reads or writes fully aligned
///   if it sees the optimization
/// - most contemporary processors with "aligned" and "unaligned" read and write instructions
///   exhibit no performance difference if the "unaligned" variant is aligned at runtime
///
/// Less obligations mean unaligned reads and writes are less likely to make the program unsound,
/// and may be just as fast as stricter alternatives.
/// When trying to guarantee alignment, [`[T]::as_simd`][as_simd] is an option for
/// converting `[T]` to `[Simd<T, N>]`, and allows soundly operating on an aligned SIMD body,
/// but it may cost more time when handling the scalar head and tail.
/// If these are not enough, it is most ideal to design data structures to be already aligned
/// to `mem::align_of::<Simd<T, N>>()` before using `unsafe` Rust to read or write.
/// Other ways to compensate for these facts, like materializing `Simd` to or from an array first,
/// are handled by safe methods like [`Simd::from_array`] and [`Simd::from_slice`].
///
/// [`transmute`]: core::mem::transmute
/// [raw pointers]: pointer
/// [`read_unaligned`]: pointer::read_unaligned
/// [`write_unaligned`]: pointer::write_unaligned
/// [`read`]: pointer::read
/// [`write`]: pointer::write
/// [as_simd]: slice::as_simd
//
// NOTE: Accessing the inner array directly in any way (e.g. by using the `.0` field syntax) or
// directly constructing an instance of the type (i.e. `let vector = Simd(array)`) should be
// avoided, as it will likely become illegal on `#[repr(simd)]` structs in the future. It also
// causes rustc to emit illegal LLVM IR in some cases.
#[repr(simd)]
pub struct Simd<T, const N: usize>([T; N])
where
    LaneCount<N>: SupportedLaneCount,
    T: SimdElement;

impl<T, const N: usize> Simd<T, N>
where
    LaneCount<N>: SupportedLaneCount,
    T: SimdElement,
{
    /// Number of elements in this vector.
    pub const LANES: usize = N;

    /// Returns the number of elements in this SIMD vector.
    ///
    /// # Examples
    ///
    /// ```
    /// # #![feature(portable_simd)]
    /// # use core::simd::u32x4;
    /// let v = u32x4::splat(0);
    /// assert_eq!(v.lanes(), 4);
    /// ```
    #[inline]
    pub const fn lanes(&self) -> usize {
        Self::LANES
    }

    /// Constructs a new SIMD vector with all elements set to the given value.
    ///
    /// # Examples
    ///
    /// ```
    /// # #![feature(portable_simd)]
    /// # use core::simd::u32x4;
    /// let v = u32x4::splat(8);
    /// assert_eq!(v.as_array(), &[8, 8, 8, 8]);
    /// ```
    #[inline]
    pub fn splat(value: T) -> Self {
        // This is preferred over `[value; N]`, since it's explicitly a splat:
        // https://github.com/rust-lang/rust/issues/97804
        struct Splat;
        impl<const N: usize> Swizzle<1, N> for Splat {
            const INDEX: [usize; N] = [0; N];
        }
        Splat::swizzle(Simd::<T, 1>::from([value]))
    }

    /// Returns an array reference containing the entire SIMD vector.
    ///
    /// # Examples
    ///
    /// ```
    /// # #![feature(portable_simd)]
    /// # use core::simd::{Simd, u64x4};
    /// let v: u64x4 = Simd::from_array([0, 1, 2, 3]);
    /// assert_eq!(v.as_array(), &[0, 1, 2, 3]);
    /// ```
    #[inline]
    pub const fn as_array(&self) -> &[T; N] {
        // SAFETY: `Simd<T, N>` is just an overaligned `[T; N]` with
        // potential padding at the end, so pointer casting to a
        // `&[T; N]` is safe.
        //
        // NOTE: This deliberately doesn't just use `&self.0`, see the comment
        // on the struct definition for details.
        unsafe { &*(self as *const Self as *const [T; N]) }
    }

    /// Returns a mutable array reference containing the entire SIMD vector.
    #[inline]
    pub fn as_mut_array(&mut self) -> &mut [T; N] {
        // SAFETY: `Simd<T, N>` is just an overaligned `[T; N]` with
        // potential padding at the end, so pointer casting to a
        // `&mut [T; N]` is safe.
        //
        // NOTE: This deliberately doesn't just use `&mut self.0`, see the comment
        // on the struct definition for details.
        unsafe { &mut *(self as *mut Self as *mut [T; N]) }
    }

    /// Load a vector from an array of `T`.
    ///
    /// This function is necessary since `repr(simd)` has padding for non-power-of-2 vectors (at the time of writing).
    /// With padding, `read_unaligned` will read past the end of an array of N elements.
    ///
    /// # Safety
    /// Reading `ptr` must be safe, as if by `<*const [T; N]>::read_unaligned`.
    #[inline]
    const unsafe fn load(ptr: *const [T; N]) -> Self {
        // There are potentially simpler ways to write this function, but this should result in
        // LLVM `load <N x T>`

        let mut tmp = core::mem::MaybeUninit::<Self>::uninit();
        // SAFETY: `Simd<T, N>` always contains `N` elements of type `T`.  It may have padding
        // which does not need to be initialized.  The safety of reading `ptr` is ensured by the
        // caller.
        unsafe {
            core::ptr::copy_nonoverlapping(ptr, tmp.as_mut_ptr().cast(), 1);
            tmp.assume_init()
        }
    }

    /// Store a vector to an array of `T`.
    ///
    /// See `load` as to why this function is necessary.
    ///
    /// # Safety
    /// Writing to `ptr` must be safe, as if by `<*mut [T; N]>::write_unaligned`.
    #[inline]
    const unsafe fn store(self, ptr: *mut [T; N]) {
        // There are potentially simpler ways to write this function, but this should result in
        // LLVM `store <N x T>`

        // Creating a temporary helps LLVM turn the memcpy into a store.
        let tmp = self;
        // SAFETY: `Simd<T, N>` always contains `N` elements of type `T`.  The safety of writing
        // `ptr` is ensured by the caller.
        unsafe { core::ptr::copy_nonoverlapping(tmp.as_array(), ptr, 1) }
    }

    /// Converts an array to a SIMD vector.
    #[inline]
    pub const fn from_array(array: [T; N]) -> Self {
        // SAFETY: `&array` is safe to read.
        //
        // FIXME: We currently use a pointer load instead of `transmute_copy` because `repr(simd)`
        // results in padding for non-power-of-2 vectors (so vectors are larger than arrays).
        //
        // NOTE: This deliberately doesn't just use `Self(array)`, see the comment
        // on the struct definition for details.
        unsafe { Self::load(&array) }
    }

    /// Converts a SIMD vector to an array.
    #[inline]
    pub const fn to_array(self) -> [T; N] {
        let mut tmp = core::mem::MaybeUninit::uninit();
        // SAFETY: writing to `tmp` is safe and initializes it.
        //
        // FIXME: We currently use a pointer store instead of `transmute_copy` because `repr(simd)`
        // results in padding for non-power-of-2 vectors (so vectors are larger than arrays).
        //
        // NOTE: This deliberately doesn't just use `self.0`, see the comment
        // on the struct definition for details.
        unsafe {
            self.store(tmp.as_mut_ptr());
            tmp.assume_init()
        }
    }

    /// Converts a slice to a SIMD vector containing `slice[..N]`.
    ///
    /// # Panics
    ///
    /// Panics if the slice's length is less than the vector's `Simd::N`.
    ///
    /// # Example
    ///
    /// ```
    /// # #![feature(portable_simd)]
    /// # use core::simd::u32x4;
    /// let source = vec![1, 2, 3, 4, 5, 6];
    /// let v = u32x4::from_slice(&source);
    /// assert_eq!(v.as_array(), &[1, 2, 3, 4]);
    /// ```
    #[must_use]
    #[inline]
    #[track_caller]
    pub const fn from_slice(slice: &[T]) -> Self {
        assert!(
            slice.len() >= Self::LANES,
            "slice length must be at least the number of elements"
        );
        // SAFETY: We just checked that the slice contains
        // at least `N` elements.
        unsafe { Self::load(slice.as_ptr().cast()) }
    }

    /// Writes a SIMD vector to the first `N` elements of a slice.
    ///
    /// # Panics
    ///
    /// Panics if the slice's length is less than the vector's `Simd::N`.
    ///
    /// # Example
    ///
    /// ```
    /// # #![feature(portable_simd)]
    /// # #[cfg(feature = "as_crate")] use core_simd::simd;
    /// # #[cfg(not(feature = "as_crate"))] use core::simd;
    /// # use simd::u32x4;
    /// let mut dest = vec![0; 6];
    /// let v = u32x4::from_array([1, 2, 3, 4]);
    /// v.copy_to_slice(&mut dest);
    /// assert_eq!(&dest, &[1, 2, 3, 4, 0, 0]);
    /// ```
    #[inline]
    #[track_caller]
    pub fn copy_to_slice(self, slice: &mut [T]) {
        assert!(
            slice.len() >= Self::LANES,
            "slice length must be at least the number of elements"
        );
        // SAFETY: We just checked that the slice contains
        // at least `N` elements.
        unsafe { self.store(slice.as_mut_ptr().cast()) }
    }

    /// Reads from potentially discontiguous indices in `slice` to construct a SIMD vector.
    /// If an index is out-of-bounds, the element is instead selected from the `or` vector.
    ///
    /// # Examples
    /// ```
    /// # #![feature(portable_simd)]
    /// # use core::simd::Simd;
    /// let vec: Vec<i32> = vec![10, 11, 12, 13, 14, 15, 16, 17, 18];
    /// let idxs = Simd::from_array([9, 3, 0, 5]);  // Note the index that is out-of-bounds
    /// let alt = Simd::from_array([-5, -4, -3, -2]);
    ///
    /// let result = Simd::gather_or(&vec, idxs, alt);
    /// assert_eq!(result, Simd::from_array([-5, 13, 10, 15]));
    /// ```
    #[must_use]
    #[inline]
    pub fn gather_or(slice: &[T], idxs: Simd<usize, N>, or: Self) -> Self {
        Self::gather_select(slice, Mask::splat(true), idxs, or)
    }

    /// Reads from indices in `slice` to construct a SIMD vector.
    /// If an index is out-of-bounds, the element is set to the default given by `T: Default`.
    ///
    /// # Examples
    /// ```
    /// # #![feature(portable_simd)]
    /// # use core::simd::Simd;
    /// let vec: Vec<i32> = vec![10, 11, 12, 13, 14, 15, 16, 17, 18];
    /// let idxs = Simd::from_array([9, 3, 0, 5]);  // Note the index that is out-of-bounds
    ///
    /// let result = Simd::gather_or_default(&vec, idxs);
    /// assert_eq!(result, Simd::from_array([0, 13, 10, 15]));
    /// ```
    #[must_use]
    #[inline]
    pub fn gather_or_default(slice: &[T], idxs: Simd<usize, N>) -> Self
    where
        T: Default,
    {
        Self::gather_or(slice, idxs, Self::splat(T::default()))
    }

    /// Reads from indices in `slice` to construct a SIMD vector.
    /// The mask `enable`s all `true` indices and disables all `false` indices.
    /// If an index is disabled or is out-of-bounds, the element is selected from the `or` vector.
    ///
    /// # Examples
    /// ```
    /// # #![feature(portable_simd)]
    /// # use core::simd::{Simd, Mask};
    /// let vec: Vec<i32> = vec![10, 11, 12, 13, 14, 15, 16, 17, 18];
    /// let idxs = Simd::from_array([9, 3, 0, 5]); // Includes an out-of-bounds index
    /// let alt = Simd::from_array([-5, -4, -3, -2]);
    /// let enable = Mask::from_array([true, true, true, false]); // Includes a masked element
    ///
    /// let result = Simd::gather_select(&vec, enable, idxs, alt);
    /// assert_eq!(result, Simd::from_array([-5, 13, 10, -2]));
    /// ```
    #[must_use]
    #[inline]
    pub fn gather_select(
        slice: &[T],
        enable: Mask<isize, N>,
        idxs: Simd<usize, N>,
        or: Self,
    ) -> Self {
        let enable: Mask<isize, N> = enable & idxs.simd_lt(Simd::splat(slice.len()));
        // Safety: We have masked-off out-of-bounds indices.
        unsafe { Self::gather_select_unchecked(slice, enable, idxs, or) }
    }

    /// Reads from indices in `slice` to construct a SIMD vector.
    /// The mask `enable`s all `true` indices and disables all `false` indices.
    /// If an index is disabled, the element is selected from the `or` vector.
    ///
    /// # Safety
    ///
    /// Calling this function with an `enable`d out-of-bounds index is *[undefined behavior]*
    /// even if the resulting value is not used.
    ///
    /// # Examples
    /// ```
    /// # #![feature(portable_simd)]
    /// # #[cfg(feature = "as_crate")] use core_simd::simd;
    /// # #[cfg(not(feature = "as_crate"))] use core::simd;
    /// # use simd::{Simd, SimdPartialOrd, Mask};
    /// let vec: Vec<i32> = vec![10, 11, 12, 13, 14, 15, 16, 17, 18];
    /// let idxs = Simd::from_array([9, 3, 0, 5]); // Includes an out-of-bounds index
    /// let alt = Simd::from_array([-5, -4, -3, -2]);
    /// let enable = Mask::from_array([true, true, true, false]); // Includes a masked element
    /// // If this mask was used to gather, it would be unsound. Let's fix that.
    /// let enable = enable & idxs.simd_lt(Simd::splat(vec.len()));
    ///
    /// // The out-of-bounds index has been masked, so it's safe to gather now.
    /// let result = unsafe { Simd::gather_select_unchecked(&vec, enable, idxs, alt) };
    /// assert_eq!(result, Simd::from_array([-5, 13, 10, -2]));
    /// ```
    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
    #[must_use]
    #[inline]
    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
    pub unsafe fn gather_select_unchecked(
        slice: &[T],
        enable: Mask<isize, N>,
        idxs: Simd<usize, N>,
        or: Self,
    ) -> Self {
        let base_ptr = Simd::<*const T, N>::splat(slice.as_ptr());
        // Ferris forgive me, I have done pointer arithmetic here.
        let ptrs = base_ptr.wrapping_add(idxs);
        // Safety: The caller is responsible for determining the indices are okay to read
        unsafe { Self::gather_select_ptr(ptrs, enable, or) }
    }

    /// Read elementwise from pointers into a SIMD vector.
    ///
    /// # Safety
    ///
    /// Each read must satisfy the same conditions as [`core::ptr::read`].
    ///
    /// # Example
    /// ```
    /// # #![feature(portable_simd)]
    /// # #[cfg(feature = "as_crate")] use core_simd::simd;
    /// # #[cfg(not(feature = "as_crate"))] use core::simd;
    /// # use simd::{Simd, SimdConstPtr};
    /// let values = [6, 2, 4, 9];
    /// let offsets = Simd::from_array([1, 0, 0, 3]);
    /// let source = Simd::splat(values.as_ptr()).wrapping_add(offsets);
    /// let gathered = unsafe { Simd::gather_ptr(source) };
    /// assert_eq!(gathered, Simd::from_array([2, 6, 6, 9]));
    /// ```
    #[must_use]
    #[inline]
    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
    pub unsafe fn gather_ptr(source: Simd<*const T, N>) -> Self
    where
        T: Default,
    {
        // TODO: add an intrinsic that doesn't use a passthru vector, and remove the T: Default bound
        // Safety: The caller is responsible for upholding all invariants
        unsafe { Self::gather_select_ptr(source, Mask::splat(true), Self::default()) }
    }

    /// Conditionally read elementwise from pointers into a SIMD vector.
    /// The mask `enable`s all `true` pointers and disables all `false` pointers.
    /// If a pointer is disabled, the element is selected from the `or` vector,
    /// and no read is performed.
    ///
    /// # Safety
    ///
    /// Enabled elements must satisfy the same conditions as [`core::ptr::read`].
    ///
    /// # Example
    /// ```
    /// # #![feature(portable_simd)]
    /// # #[cfg(feature = "as_crate")] use core_simd::simd;
    /// # #[cfg(not(feature = "as_crate"))] use core::simd;
    /// # use simd::{Mask, Simd, SimdConstPtr};
    /// let values = [6, 2, 4, 9];
    /// let enable = Mask::from_array([true, true, false, true]);
    /// let offsets = Simd::from_array([1, 0, 0, 3]);
    /// let source = Simd::splat(values.as_ptr()).wrapping_add(offsets);
    /// let gathered = unsafe { Simd::gather_select_ptr(source, enable, Simd::splat(0)) };
    /// assert_eq!(gathered, Simd::from_array([2, 6, 0, 9]));
    /// ```
    #[must_use]
    #[inline]
    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
    pub unsafe fn gather_select_ptr(
        source: Simd<*const T, N>,
        enable: Mask<isize, N>,
        or: Self,
    ) -> Self {
        // Safety: The caller is responsible for upholding all invariants
        unsafe { intrinsics::simd_gather(or, source, enable.to_int()) }
    }

    /// Writes the values in a SIMD vector to potentially discontiguous indices in `slice`.
    /// If an index is out-of-bounds, the write is suppressed without panicking.
    /// If two elements in the scattered vector would write to the same index
    /// only the last element is guaranteed to actually be written.
    ///
    /// # Examples
    /// ```
    /// # #![feature(portable_simd)]
    /// # use core::simd::Simd;
    /// let mut vec: Vec<i32> = vec![10, 11, 12, 13, 14, 15, 16, 17, 18];
    /// let idxs = Simd::from_array([9, 3, 0, 0]); // Note the duplicate index.
    /// let vals = Simd::from_array([-27, 82, -41, 124]);
    ///
    /// vals.scatter(&mut vec, idxs); // two logical writes means the last wins.
    /// assert_eq!(vec, vec![124, 11, 12, 82, 14, 15, 16, 17, 18]);
    /// ```
    #[inline]
    pub fn scatter(self, slice: &mut [T], idxs: Simd<usize, N>) {
        self.scatter_select(slice, Mask::splat(true), idxs)
    }

    /// Writes values from a SIMD vector to multiple potentially discontiguous indices in `slice`.
    /// The mask `enable`s all `true` indices and disables all `false` indices.
    /// If an enabled index is out-of-bounds, the write is suppressed without panicking.
    /// If two enabled elements in the scattered vector would write to the same index,
    /// only the last element is guaranteed to actually be written.
    ///
    /// # Examples
    /// ```
    /// # #![feature(portable_simd)]
    /// # #[cfg(feature = "as_crate")] use core_simd::simd;
    /// # #[cfg(not(feature = "as_crate"))] use core::simd;
    /// # use simd::{Simd, Mask};
    /// let mut vec: Vec<i32> = vec![10, 11, 12, 13, 14, 15, 16, 17, 18];
    /// let idxs = Simd::from_array([9, 3, 0, 0]); // Includes an out-of-bounds index
    /// let vals = Simd::from_array([-27, 82, -41, 124]);
    /// let enable = Mask::from_array([true, true, true, false]); // Includes a masked element
    ///
    /// vals.scatter_select(&mut vec, enable, idxs); // The last write is masked, thus omitted.
    /// assert_eq!(vec, vec![-41, 11, 12, 82, 14, 15, 16, 17, 18]);
    /// ```
    #[inline]
    pub fn scatter_select(self, slice: &mut [T], enable: Mask<isize, N>, idxs: Simd<usize, N>) {
        let enable: Mask<isize, N> = enable & idxs.simd_lt(Simd::splat(slice.len()));
        // Safety: We have masked-off out-of-bounds indices.
        unsafe { self.scatter_select_unchecked(slice, enable, idxs) }
    }

    /// Writes values from a SIMD vector to multiple potentially discontiguous indices in `slice`.
    /// The mask `enable`s all `true` indices and disables all `false` indices.
    /// If two enabled elements in the scattered vector would write to the same index,
    /// only the last element is guaranteed to actually be written.
    ///
    /// # Safety
    ///
    /// Calling this function with an enabled out-of-bounds index is *[undefined behavior]*,
    /// and may lead to memory corruption.
    ///
    /// # Examples
    /// ```
    /// # #![feature(portable_simd)]
    /// # #[cfg(feature = "as_crate")] use core_simd::simd;
    /// # #[cfg(not(feature = "as_crate"))] use core::simd;
    /// # use simd::{Simd, SimdPartialOrd, Mask};
    /// let mut vec: Vec<i32> = vec![10, 11, 12, 13, 14, 15, 16, 17, 18];
    /// let idxs = Simd::from_array([9, 3, 0, 0]);
    /// let vals = Simd::from_array([-27, 82, -41, 124]);
    /// let enable = Mask::from_array([true, true, true, false]); // Masks the final index
    /// // If this mask was used to scatter, it would be unsound. Let's fix that.
    /// let enable = enable & idxs.simd_lt(Simd::splat(vec.len()));
    ///
    /// // We have masked the OOB index, so it's safe to scatter now.
    /// unsafe { vals.scatter_select_unchecked(&mut vec, enable, idxs); }
    /// // The second write to index 0 was masked, thus omitted.
    /// assert_eq!(vec, vec![-41, 11, 12, 82, 14, 15, 16, 17, 18]);
    /// ```
    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
    #[inline]
    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
    pub unsafe fn scatter_select_unchecked(
        self,
        slice: &mut [T],
        enable: Mask<isize, N>,
        idxs: Simd<usize, N>,
    ) {
        // Safety: This block works with *mut T derived from &mut 'a [T],
        // which means it is delicate in Rust's borrowing model, circa 2021:
        // &mut 'a [T] asserts uniqueness, so deriving &'a [T] invalidates live *mut Ts!
        // Even though this block is largely safe methods, it must be exactly this way
        // to prevent invalidating the raw ptrs while they're live.
        // Thus, entering this block requires all values to use being already ready:
        // 0. idxs we want to write to, which are used to construct the mask.
        // 1. enable, which depends on an initial &'a [T] and the idxs.
        // 2. actual values to scatter (self).
        // 3. &mut [T] which will become our base ptr.
        unsafe {
            // Now Entering ☢️ *mut T Zone
            let base_ptr = Simd::<*mut T, N>::splat(slice.as_mut_ptr());
            // Ferris forgive me, I have done pointer arithmetic here.
            let ptrs = base_ptr.wrapping_add(idxs);
            // The ptrs have been bounds-masked to prevent memory-unsafe writes insha'allah
            self.scatter_select_ptr(ptrs, enable);
            // Cleared ☢️ *mut T Zone
        }
    }

    /// Write pointers elementwise into a SIMD vector.
    ///
    /// # Safety
    ///
    /// Each write must satisfy the same conditions as [`core::ptr::write`].
    ///
    /// # Example
    /// ```
    /// # #![feature(portable_simd)]
    /// # #[cfg(feature = "as_crate")] use core_simd::simd;
    /// # #[cfg(not(feature = "as_crate"))] use core::simd;
    /// # use simd::{Simd, SimdMutPtr};
    /// let mut values = [0; 4];
    /// let offset = Simd::from_array([3, 2, 1, 0]);
    /// let ptrs = Simd::splat(values.as_mut_ptr()).wrapping_add(offset);
    /// unsafe { Simd::from_array([6, 3, 5, 7]).scatter_ptr(ptrs); }
    /// assert_eq!(values, [7, 5, 3, 6]);
    /// ```
    #[inline]
    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
    pub unsafe fn scatter_ptr(self, dest: Simd<*mut T, N>) {
        // Safety: The caller is responsible for upholding all invariants
        unsafe { self.scatter_select_ptr(dest, Mask::splat(true)) }
    }

    /// Conditionally write pointers elementwise into a SIMD vector.
    /// The mask `enable`s all `true` pointers and disables all `false` pointers.
    /// If a pointer is disabled, the write to its pointee is skipped.
    ///
    /// # Safety
    ///
    /// Enabled pointers must satisfy the same conditions as [`core::ptr::write`].
    ///
    /// # Example
    /// ```
    /// # #![feature(portable_simd)]
    /// # #[cfg(feature = "as_crate")] use core_simd::simd;
    /// # #[cfg(not(feature = "as_crate"))] use core::simd;
    /// # use simd::{Mask, Simd, SimdMutPtr};
    /// let mut values = [0; 4];
    /// let offset = Simd::from_array([3, 2, 1, 0]);
    /// let ptrs = Simd::splat(values.as_mut_ptr()).wrapping_add(offset);
    /// let enable = Mask::from_array([true, true, false, false]);
    /// unsafe { Simd::from_array([6, 3, 5, 7]).scatter_select_ptr(ptrs, enable); }
    /// assert_eq!(values, [0, 0, 3, 6]);
    /// ```
    #[inline]
    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
    pub unsafe fn scatter_select_ptr(self, dest: Simd<*mut T, N>, enable: Mask<isize, N>) {
        // Safety: The caller is responsible for upholding all invariants
        unsafe { intrinsics::simd_scatter(self, dest, enable.to_int()) }
    }
}

impl<T, const N: usize> Copy for Simd<T, N>
where
    LaneCount<N>: SupportedLaneCount,
    T: SimdElement,
{
}

impl<T, const N: usize> Clone for Simd<T, N>
where
    LaneCount<N>: SupportedLaneCount,
    T: SimdElement,
{
    #[inline]
    fn clone(&self) -> Self {
        *self
    }
}

impl<T, const N: usize> Default for Simd<T, N>
where
    LaneCount<N>: SupportedLaneCount,
    T: SimdElement + Default,
{
    #[inline]
    fn default() -> Self {
        Self::splat(T::default())
    }
}

impl<T, const N: usize> PartialEq for Simd<T, N>
where
    LaneCount<N>: SupportedLaneCount,
    T: SimdElement + PartialEq,
{
    #[inline]
    fn eq(&self, other: &Self) -> bool {
        // Safety: All SIMD vectors are SimdPartialEq, and the comparison produces a valid mask.
        let mask = unsafe {
            let tfvec: Simd<<T as SimdElement>::Mask, N> = intrinsics::simd_eq(*self, *other);
            Mask::from_int_unchecked(tfvec)
        };

        // Two vectors are equal if all elements are equal when compared elementwise
        mask.all()
    }

    #[allow(clippy::partialeq_ne_impl)]
    #[inline]
    fn ne(&self, other: &Self) -> bool {
        // Safety: All SIMD vectors are SimdPartialEq, and the comparison produces a valid mask.
        let mask = unsafe {
            let tfvec: Simd<<T as SimdElement>::Mask, N> = intrinsics::simd_ne(*self, *other);
            Mask::from_int_unchecked(tfvec)
        };

        // Two vectors are non-equal if any elements are non-equal when compared elementwise
        mask.any()
    }
}

impl<T, const N: usize> PartialOrd for Simd<T, N>
where
    LaneCount<N>: SupportedLaneCount,
    T: SimdElement + PartialOrd,
{
    #[inline]
    fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
        // TODO use SIMD equality
        self.to_array().partial_cmp(other.as_ref())
    }
}

impl<T, const N: usize> Eq for Simd<T, N>
where
    LaneCount<N>: SupportedLaneCount,
    T: SimdElement + Eq,
{
}

impl<T, const N: usize> Ord for Simd<T, N>
where
    LaneCount<N>: SupportedLaneCount,
    T: SimdElement + Ord,
{
    #[inline]
    fn cmp(&self, other: &Self) -> core::cmp::Ordering {
        // TODO use SIMD equality
        self.to_array().cmp(other.as_ref())
    }
}

impl<T, const N: usize> core::hash::Hash for Simd<T, N>
where
    LaneCount<N>: SupportedLaneCount,
    T: SimdElement + core::hash::Hash,
{
    #[inline]
    fn hash<H>(&self, state: &mut H)
    where
        H: core::hash::Hasher,
    {
        self.as_array().hash(state)
    }
}

// array references
impl<T, const N: usize> AsRef<[T; N]> for Simd<T, N>
where
    LaneCount<N>: SupportedLaneCount,
    T: SimdElement,
{
    #[inline]
    fn as_ref(&self) -> &[T; N] {
        self.as_array()
    }
}

impl<T, const N: usize> AsMut<[T; N]> for Simd<T, N>
where
    LaneCount<N>: SupportedLaneCount,
    T: SimdElement,
{
    #[inline]
    fn as_mut(&mut self) -> &mut [T; N] {
        self.as_mut_array()
    }
}

// slice references
impl<T, const N: usize> AsRef<[T]> for Simd<T, N>
where
    LaneCount<N>: SupportedLaneCount,
    T: SimdElement,
{
    #[inline]
    fn as_ref(&self) -> &[T] {
        self.as_array()
    }
}

impl<T, const N: usize> AsMut<[T]> for Simd<T, N>
where
    LaneCount<N>: SupportedLaneCount,
    T: SimdElement,
{
    #[inline]
    fn as_mut(&mut self) -> &mut [T] {
        self.as_mut_array()
    }
}

// vector/array conversion
impl<T, const N: usize> From<[T; N]> for Simd<T, N>
where
    LaneCount<N>: SupportedLaneCount,
    T: SimdElement,
{
    #[inline]
    fn from(array: [T; N]) -> Self {
        Self::from_array(array)
    }
}

impl<T, const N: usize> From<Simd<T, N>> for [T; N]
where
    LaneCount<N>: SupportedLaneCount,
    T: SimdElement,
{
    #[inline]
    fn from(vector: Simd<T, N>) -> Self {
        vector.to_array()
    }
}

impl<T, const N: usize> TryFrom<&[T]> for Simd<T, N>
where
    LaneCount<N>: SupportedLaneCount,
    T: SimdElement,
{
    type Error = core::array::TryFromSliceError;

    #[inline]
    fn try_from(slice: &[T]) -> Result<Self, core::array::TryFromSliceError> {
        Ok(Self::from_array(slice.try_into()?))
    }
}

impl<T, const N: usize> TryFrom<&mut [T]> for Simd<T, N>
where
    LaneCount<N>: SupportedLaneCount,
    T: SimdElement,
{
    type Error = core::array::TryFromSliceError;

    #[inline]
    fn try_from(slice: &mut [T]) -> Result<Self, core::array::TryFromSliceError> {
        Ok(Self::from_array(slice.try_into()?))
    }
}

mod sealed {
    pub trait Sealed {}
}
use sealed::Sealed;

/// Marker trait for types that may be used as SIMD vector elements.
///
/// # Safety
/// This trait, when implemented, asserts the compiler can monomorphize
/// `#[repr(simd)]` structs with the marked type as an element.
/// Strictly, it is valid to impl if the vector will not be miscompiled.
/// Practically, it is user-unfriendly to impl it if the vector won't compile,
/// even when no soundness guarantees are broken by allowing the user to try.
pub unsafe trait SimdElement: Sealed + Copy {
    /// The mask element type corresponding to this element type.
    type Mask: MaskElement;
}

impl Sealed for u8 {}

// Safety: u8 is a valid SIMD element type, and is supported by this API
unsafe impl SimdElement for u8 {
    type Mask = i8;
}

impl Sealed for u16 {}

// Safety: u16 is a valid SIMD element type, and is supported by this API
unsafe impl SimdElement for u16 {
    type Mask = i16;
}

impl Sealed for u32 {}

// Safety: u32 is a valid SIMD element type, and is supported by this API
unsafe impl SimdElement for u32 {
    type Mask = i32;
}

impl Sealed for u64 {}

// Safety: u64 is a valid SIMD element type, and is supported by this API
unsafe impl SimdElement for u64 {
    type Mask = i64;
}

impl Sealed for usize {}

// Safety: usize is a valid SIMD element type, and is supported by this API
unsafe impl SimdElement for usize {
    type Mask = isize;
}

impl Sealed for i8 {}

// Safety: i8 is a valid SIMD element type, and is supported by this API
unsafe impl SimdElement for i8 {
    type Mask = i8;
}

impl Sealed for i16 {}

// Safety: i16 is a valid SIMD element type, and is supported by this API
unsafe impl SimdElement for i16 {
    type Mask = i16;
}

impl Sealed for i32 {}

// Safety: i32 is a valid SIMD element type, and is supported by this API
unsafe impl SimdElement for i32 {
    type Mask = i32;
}

impl Sealed for i64 {}

// Safety: i64 is a valid SIMD element type, and is supported by this API
unsafe impl SimdElement for i64 {
    type Mask = i64;
}

impl Sealed for isize {}

// Safety: isize is a valid SIMD element type, and is supported by this API
unsafe impl SimdElement for isize {
    type Mask = isize;
}

impl Sealed for f32 {}

// Safety: f32 is a valid SIMD element type, and is supported by this API
unsafe impl SimdElement for f32 {
    type Mask = i32;
}

impl Sealed for f64 {}

// Safety: f64 is a valid SIMD element type, and is supported by this API
unsafe impl SimdElement for f64 {
    type Mask = i64;
}

impl<T> Sealed for *const T {}

// Safety: (thin) const pointers are valid SIMD element types, and are supported by this API
//
// Fat pointers may be supported in the future.
unsafe impl<T> SimdElement for *const T
where
    T: core::ptr::Pointee<Metadata = ()>,
{
    type Mask = isize;
}

impl<T> Sealed for *mut T {}

// Safety: (thin) mut pointers are valid SIMD element types, and are supported by this API
//
// Fat pointers may be supported in the future.
unsafe impl<T> SimdElement for *mut T
where
    T: core::ptr::Pointee<Metadata = ()>,
{
    type Mask = isize;
}