1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
//! Bit Manipulation Instruction (BMI) Set 1.0.
//!
//! The reference is [Intel 64 and IA-32 Architectures Software Developer's
//! Manual Volume 2: Instruction Set Reference, A-Z][intel64_ref].
//!
//! [Wikipedia][wikipedia_bmi] provides a quick overview of the instructions
//! available.
//!
//! [intel64_ref]: http://www.intel.de/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
//! [wikipedia_bmi]: https://en.wikipedia.org/wiki/Bit_Manipulation_Instruction_Sets#ABM_.28Advanced_Bit_Manipulation.29

#[cfg(test)]
use stdarch_test::assert_instr;

/// Extracts bits in range [`start`, `start` + `length`) from `a` into
/// the least significant bits of the result.
///
/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_bextr_u32)
#[inline]
#[target_feature(enable = "bmi1")]
#[cfg_attr(test, assert_instr(bextr))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _bextr_u32(a: u32, start: u32, len: u32) -> u32 {
    _bextr2_u32(a, (start & 0xff_u32) | ((len & 0xff_u32) << 8_u32))
}

/// Extracts bits of `a` specified by `control` into
/// the least significant bits of the result.
///
/// Bits `[7,0]` of `control` specify the index to the first bit in the range
/// to be extracted, and bits `[15,8]` specify the length of the range.
///
/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_bextr2_u32)
#[inline]
#[target_feature(enable = "bmi1")]
#[cfg_attr(test, assert_instr(bextr))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _bextr2_u32(a: u32, control: u32) -> u32 {
    x86_bmi_bextr_32(a, control)
}

/// Bitwise logical `AND` of inverted `a` with `b`.
///
/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_andn_u32)
#[inline]
#[target_feature(enable = "bmi1")]
#[cfg_attr(test, assert_instr(andn))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _andn_u32(a: u32, b: u32) -> u32 {
    !a & b
}

/// Extracts lowest set isolated bit.
///
/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_blsi_u32)
#[inline]
#[target_feature(enable = "bmi1")]
#[cfg_attr(test, assert_instr(blsi))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _blsi_u32(x: u32) -> u32 {
    x & x.wrapping_neg()
}

/// Gets mask up to lowest set bit.
///
/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_blsmsk_u32)
#[inline]
#[target_feature(enable = "bmi1")]
#[cfg_attr(test, assert_instr(blsmsk))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _blsmsk_u32(x: u32) -> u32 {
    x ^ (x.wrapping_sub(1_u32))
}

/// Resets the lowest set bit of `x`.
///
/// If `x` is sets CF.
///
/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_blsr_u32)
#[inline]
#[target_feature(enable = "bmi1")]
#[cfg_attr(test, assert_instr(blsr))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _blsr_u32(x: u32) -> u32 {
    x & (x.wrapping_sub(1))
}

/// Counts the number of trailing least significant zero bits.
///
/// When the source operand is `0`, it returns its size in bits.
///
/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_tzcnt_u32)
#[inline]
#[target_feature(enable = "bmi1")]
#[cfg_attr(test, assert_instr(tzcnt))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _tzcnt_u32(x: u32) -> u32 {
    x.trailing_zeros()
}

/// Counts the number of trailing least significant zero bits.
///
/// When the source operand is `0`, it returns its size in bits.
///
/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_tzcnt_32)
#[inline]
#[target_feature(enable = "bmi1")]
#[cfg_attr(test, assert_instr(tzcnt))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_tzcnt_32(x: u32) -> i32 {
    x.trailing_zeros() as i32
}

extern "C" {
    #[link_name = "llvm.x86.bmi.bextr.32"]
    fn x86_bmi_bextr_32(x: u32, y: u32) -> u32;
}

#[cfg(test)]
mod tests {
    use stdarch_test::simd_test;

    use crate::core_arch::x86::*;

    #[simd_test(enable = "bmi1")]
    unsafe fn test_bextr_u32() {
        let r = _bextr_u32(0b0101_0000u32, 4, 4);
        assert_eq!(r, 0b0000_0101u32);
    }

    #[simd_test(enable = "bmi1")]
    unsafe fn test_andn_u32() {
        assert_eq!(_andn_u32(0, 0), 0);
        assert_eq!(_andn_u32(0, 1), 1);
        assert_eq!(_andn_u32(1, 0), 0);
        assert_eq!(_andn_u32(1, 1), 0);

        let r = _andn_u32(0b0000_0000u32, 0b0000_0000u32);
        assert_eq!(r, 0b0000_0000u32);

        let r = _andn_u32(0b0000_0000u32, 0b1111_1111u32);
        assert_eq!(r, 0b1111_1111u32);

        let r = _andn_u32(0b1111_1111u32, 0b0000_0000u32);
        assert_eq!(r, 0b0000_0000u32);

        let r = _andn_u32(0b1111_1111u32, 0b1111_1111u32);
        assert_eq!(r, 0b0000_0000u32);

        let r = _andn_u32(0b0100_0000u32, 0b0101_1101u32);
        assert_eq!(r, 0b0001_1101u32);
    }

    #[simd_test(enable = "bmi1")]
    unsafe fn test_blsi_u32() {
        assert_eq!(_blsi_u32(0b1101_0000u32), 0b0001_0000u32);
    }

    #[simd_test(enable = "bmi1")]
    unsafe fn test_blsmsk_u32() {
        let r = _blsmsk_u32(0b0011_0000u32);
        assert_eq!(r, 0b0001_1111u32);
    }

    #[simd_test(enable = "bmi1")]
    unsafe fn test_blsr_u32() {
        // TODO: test the behavior when the input is `0`.
        let r = _blsr_u32(0b0011_0000u32);
        assert_eq!(r, 0b0010_0000u32);
    }

    #[simd_test(enable = "bmi1")]
    unsafe fn test_tzcnt_u32() {
        assert_eq!(_tzcnt_u32(0b0000_0001u32), 0u32);
        assert_eq!(_tzcnt_u32(0b0000_0000u32), 32u32);
        assert_eq!(_tzcnt_u32(0b1001_0000u32), 4u32);
    }
}