1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
// SPDX-License-Identifier: GPL-2.0
//! Networking core.
//!
//! C headers: [`include/net/net_namespace.h`](../../../../include/linux/net/net_namespace.h),
//! [`include/linux/netdevice.h`](../../../../include/linux/netdevice.h),
//! [`include/linux/skbuff.h`](../../../../include/linux/skbuff.h).
use crate::{bindings, str::CStr, to_result, ARef, AlwaysRefCounted, Error, Result};
use core::{cell::UnsafeCell, ptr::NonNull};
#[cfg(CONFIG_NETFILTER)]
pub mod filter;
/// Wraps the kernel's `struct net_device`.
#[repr(transparent)]
pub struct Device(UnsafeCell<bindings::net_device>);
// SAFETY: Instances of `Device` are created on the C side. They are always refcounted.
unsafe impl AlwaysRefCounted for Device {
fn inc_ref(&self) {
// SAFETY: The existence of a shared reference means that the refcount is nonzero.
unsafe { bindings::dev_hold(self.0.get()) };
}
unsafe fn dec_ref(obj: core::ptr::NonNull<Self>) {
// SAFETY: The safety requirements guarantee that the refcount is nonzero.
unsafe { bindings::dev_put(obj.cast().as_ptr()) };
}
}
/// Wraps the kernel's `struct net`.
#[repr(transparent)]
pub struct Namespace(UnsafeCell<bindings::net>);
impl Namespace {
/// Finds a network device with the given name in the namespace.
pub fn dev_get_by_name(&self, name: &CStr) -> Option<ARef<Device>> {
// SAFETY: The existence of a shared reference guarantees the refcount is nonzero.
let ptr =
NonNull::new(unsafe { bindings::dev_get_by_name(self.0.get(), name.as_char_ptr()) })?;
Some(unsafe { ARef::from_raw(ptr.cast()) })
}
}
// SAFETY: Instances of `Namespace` are created on the C side. They are always refcounted.
unsafe impl AlwaysRefCounted for Namespace {
fn inc_ref(&self) {
// SAFETY: The existence of a shared reference means that the refcount is nonzero.
unsafe { bindings::get_net(self.0.get()) };
}
unsafe fn dec_ref(obj: core::ptr::NonNull<Self>) {
// SAFETY: The safety requirements guarantee that the refcount is nonzero.
unsafe { bindings::put_net(obj.cast().as_ptr()) };
}
}
/// Returns the network namespace for the `init` process.
pub fn init_ns() -> &'static Namespace {
unsafe { &*core::ptr::addr_of!(bindings::init_net).cast() }
}
/// Wraps the kernel's `struct sk_buff`.
#[repr(transparent)]
pub struct SkBuff(UnsafeCell<bindings::sk_buff>);
impl SkBuff {
/// Creates a reference to an [`SkBuff`] from a valid pointer.
///
/// # Safety
///
/// The caller must ensure that `ptr` is valid and remains valid for the lifetime of the
/// returned [`SkBuff`] instance.
pub unsafe fn from_ptr<'a>(ptr: *const bindings::sk_buff) -> &'a SkBuff {
// SAFETY: The safety requirements guarantee the validity of the dereference, while the
// `SkBuff` type being transparent makes the cast ok.
unsafe { &*ptr.cast() }
}
/// Returns the remaining data in the buffer's first segment.
pub fn head_data(&self) -> &[u8] {
// SAFETY: The existence of a shared reference means that the refcount is nonzero.
let headlen = unsafe { bindings::skb_headlen(self.0.get()) };
let len = headlen.try_into().unwrap_or(usize::MAX);
// SAFETY: The existence of a shared reference means `self.0` is valid.
let data = unsafe { core::ptr::addr_of!((*self.0.get()).data).read() };
// SAFETY: The `struct sk_buff` conventions guarantee that at least `skb_headlen(skb)` bytes
// are valid from `skb->data`.
unsafe { core::slice::from_raw_parts(data, len) }
}
/// Returns the total length of the data (in all segments) in the skb.
#[allow(clippy::len_without_is_empty)]
pub fn len(&self) -> u32 {
// SAFETY: The existence of a shared reference means `self.0` is valid.
unsafe { core::ptr::addr_of!((*self.0.get()).len).read() }
}
}
// SAFETY: Instances of `SkBuff` are created on the C side. They are always refcounted.
unsafe impl AlwaysRefCounted for SkBuff {
fn inc_ref(&self) {
// SAFETY: The existence of a shared reference means that the refcount is nonzero.
unsafe { bindings::skb_get(self.0.get()) };
}
unsafe fn dec_ref(obj: core::ptr::NonNull<Self>) {
// SAFETY: The safety requirements guarantee that the refcount is nonzero.
unsafe {
bindings::kfree_skb_reason(
obj.cast().as_ptr(),
bindings::skb_drop_reason_SKB_DROP_REASON_NOT_SPECIFIED,
)
};
}
}
/// An IPv4 address.
///
/// This is equivalent to C's `in_addr`.
#[repr(transparent)]
pub struct Ipv4Addr(bindings::in_addr);
impl Ipv4Addr {
/// A wildcard IPv4 address.
///
/// Binding to this address means binding to all IPv4 addresses.
pub const ANY: Self = Self::new(0, 0, 0, 0);
/// The IPv4 loopback address.
pub const LOOPBACK: Self = Self::new(127, 0, 0, 1);
/// The IPv4 broadcast address.
pub const BROADCAST: Self = Self::new(255, 255, 255, 255);
/// Creates a new IPv4 address with the given components.
pub const fn new(a: u8, b: u8, c: u8, d: u8) -> Self {
Self(bindings::in_addr {
s_addr: u32::from_be_bytes([a, b, c, d]).to_be(),
})
}
}
/// An IPv6 address.
///
/// This is equivalent to C's `in6_addr`.
#[repr(transparent)]
pub struct Ipv6Addr(bindings::in6_addr);
impl Ipv6Addr {
/// A wildcard IPv6 address.
///
/// Binding to this address means binding to all IPv6 addresses.
pub const ANY: Self = Self::new(0, 0, 0, 0, 0, 0, 0, 0);
/// The IPv6 loopback address.
pub const LOOPBACK: Self = Self::new(0, 0, 0, 0, 0, 0, 0, 1);
/// Creates a new IPv6 address with the given components.
#[allow(clippy::too_many_arguments)]
pub const fn new(a: u16, b: u16, c: u16, d: u16, e: u16, f: u16, g: u16, h: u16) -> Self {
Self(bindings::in6_addr {
in6_u: bindings::in6_addr__bindgen_ty_1 {
u6_addr16: [
a.to_be(),
b.to_be(),
c.to_be(),
d.to_be(),
e.to_be(),
f.to_be(),
g.to_be(),
h.to_be(),
],
},
})
}
}
/// A socket address.
///
/// It's an enum with either an IPv4 or IPv6 socket address.
pub enum SocketAddr {
/// An IPv4 socket address.
V4(SocketAddrV4),
/// An IPv6 socket address.
V6(SocketAddrV6),
}
/// An IPv4 socket address.
///
/// This is equivalent to C's `sockaddr_in`.
#[repr(transparent)]
pub struct SocketAddrV4(bindings::sockaddr_in);
impl SocketAddrV4 {
/// Creates a new IPv4 socket address.
pub const fn new(addr: Ipv4Addr, port: u16) -> Self {
Self(bindings::sockaddr_in {
sin_family: bindings::AF_INET as _,
sin_port: port.to_be(),
sin_addr: addr.0,
__pad: [0; 8],
})
}
}
/// An IPv6 socket address.
///
/// This is equivalent to C's `sockaddr_in6`.
#[repr(transparent)]
pub struct SocketAddrV6(bindings::sockaddr_in6);
impl SocketAddrV6 {
/// Creates a new IPv6 socket address.
pub const fn new(addr: Ipv6Addr, port: u16, flowinfo: u32, scopeid: u32) -> Self {
Self(bindings::sockaddr_in6 {
sin6_family: bindings::AF_INET6 as _,
sin6_port: port.to_be(),
sin6_addr: addr.0,
sin6_flowinfo: flowinfo,
sin6_scope_id: scopeid,
})
}
}
/// A socket listening on a TCP port.
///
/// # Invariants
///
/// The socket pointer is always non-null and valid.
pub struct TcpListener {
pub(crate) sock: *mut bindings::socket,
}
// SAFETY: `TcpListener` is just a wrapper for a kernel socket, which can be used from any thread.
unsafe impl Send for TcpListener {}
// SAFETY: `TcpListener` is just a wrapper for a kernel socket, which can be used from any thread.
unsafe impl Sync for TcpListener {}
impl TcpListener {
/// Creates a new TCP listener.
///
/// It is configured to listen on the given socket address for the given namespace.
pub fn try_new(ns: &Namespace, addr: &SocketAddr) -> Result<Self> {
let mut socket = core::ptr::null_mut();
let (pf, addr, addrlen) = match addr {
SocketAddr::V4(addr) => (
bindings::PF_INET,
addr as *const _ as _,
core::mem::size_of::<bindings::sockaddr_in>(),
),
SocketAddr::V6(addr) => (
bindings::PF_INET6,
addr as *const _ as _,
core::mem::size_of::<bindings::sockaddr_in6>(),
),
};
// SAFETY: The namespace is valid and the output socket pointer is valid for write.
to_result(unsafe {
bindings::sock_create_kern(
ns.0.get(),
pf as _,
bindings::sock_type_SOCK_STREAM as _,
bindings::IPPROTO_TCP as _,
&mut socket,
)
})?;
// INVARIANT: The socket was just created, so it is valid.
let listener = Self { sock: socket };
// SAFETY: The type invariant guarantees that the socket is valid, and `addr` and `addrlen`
// were initialised based on valid values provided in the address enum.
to_result(unsafe { bindings::kernel_bind(socket, addr, addrlen as _) })?;
// SAFETY: The socket is valid per the type invariant.
to_result(unsafe { bindings::kernel_listen(socket, bindings::SOMAXCONN as _) })?;
Ok(listener)
}
/// Accepts a new connection.
///
/// On success, returns the newly-accepted socket stream.
///
/// If no connection is available to be accepted, one of two behaviours will occur:
/// - If `block` is `false`, returns [`crate::error::code::EAGAIN`];
/// - If `block` is `true`, blocks until an error occurs or some connection can be accepted.
pub fn accept(&self, block: bool) -> Result<TcpStream> {
let mut new = core::ptr::null_mut();
let flags = if block { 0 } else { bindings::O_NONBLOCK };
// SAFETY: The type invariant guarantees that the socket is valid, and the output argument
// is also valid for write.
to_result(unsafe { bindings::kernel_accept(self.sock, &mut new, flags as _) })?;
Ok(TcpStream { sock: new })
}
}
impl Drop for TcpListener {
fn drop(&mut self) {
// SAFETY: The type invariant guarantees that the socket is valid.
unsafe { bindings::sock_release(self.sock) };
}
}
/// A connected TCP socket.
///
/// # Invariants
///
/// The socket pointer is always non-null and valid.
pub struct TcpStream {
pub(crate) sock: *mut bindings::socket,
}
// SAFETY: `TcpStream` is just a wrapper for a kernel socket, which can be used from any thread.
unsafe impl Send for TcpStream {}
// SAFETY: `TcpStream` is just a wrapper for a kernel socket, which can be used from any thread.
unsafe impl Sync for TcpStream {}
impl TcpStream {
/// Reads data from a connected socket.
///
/// On success, returns the number of bytes read, which will be zero if the connection is
/// closed.
///
/// If no data is immediately available for reading, one of two behaviours will occur:
/// - If `block` is `false`, returns [`crate::error::code::EAGAIN`];
/// - If `block` is `true`, blocks until an error occurs, the connection is closed, or some
/// becomes readable.
pub fn read(&self, buf: &mut [u8], block: bool) -> Result<usize> {
let mut msg = bindings::msghdr::default();
let mut vec = bindings::kvec {
iov_base: buf.as_mut_ptr().cast(),
iov_len: buf.len(),
};
// SAFETY: The type invariant guarantees that the socket is valid, and `vec` was
// initialised with the output buffer.
let r = unsafe {
bindings::kernel_recvmsg(
self.sock,
&mut msg,
&mut vec,
1,
vec.iov_len,
if block { 0 } else { bindings::MSG_DONTWAIT } as _,
)
};
if r < 0 {
Err(Error::from_kernel_errno(r))
} else {
Ok(r as _)
}
}
/// Writes data to the connected socket.
///
/// On success, returns the number of bytes written.
///
/// If the send buffer of the socket is full, one of two behaviours will occur:
/// - If `block` is `false`, returns [`crate::error::code::EAGAIN`];
/// - If `block` is `true`, blocks until an error occurs or some data is written.
pub fn write(&self, buf: &[u8], block: bool) -> Result<usize> {
let mut msg = bindings::msghdr {
msg_flags: if block { 0 } else { bindings::MSG_DONTWAIT },
..bindings::msghdr::default()
};
let mut vec = bindings::kvec {
iov_base: buf.as_ptr() as *mut u8 as _,
iov_len: buf.len(),
};
// SAFETY: The type invariant guarantees that the socket is valid, and `vec` was
// initialised with the input buffer.
let r = unsafe { bindings::kernel_sendmsg(self.sock, &mut msg, &mut vec, 1, vec.iov_len) };
if r < 0 {
Err(Error::from_kernel_errno(r))
} else {
Ok(r as _)
}
}
}
impl Drop for TcpStream {
fn drop(&mut self) {
// SAFETY: The type invariant guarantees that the socket is valid.
unsafe { bindings::sock_release(self.sock) };
}
}