1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
// SPDX-License-Identifier: GPL-2.0
//! Generic support for drivers of different buses (e.g., PCI, Platform, Amba, etc.).
//!
//! Each bus/subsystem is expected to implement [`DriverOps`], which allows drivers to register
//! using the [`Registration`] class.
use crate::{error::code::*, str::CStr, sync::Arc, Result, ThisModule};
use alloc::boxed::Box;
use core::{cell::UnsafeCell, marker::PhantomData, ops::Deref, pin::Pin};
/// A subsystem (e.g., PCI, Platform, Amba, etc.) that allows drivers to be written for it.
pub trait DriverOps {
/// The type that holds information about the registration. This is typically a struct defined
/// by the C portion of the kernel.
type RegType: Default;
/// Registers a driver.
///
/// # Safety
///
/// `reg` must point to valid, initialised, and writable memory. It may be modified by this
/// function to hold registration state.
///
/// On success, `reg` must remain pinned and valid until the matching call to
/// [`DriverOps::unregister`].
unsafe fn register(
reg: *mut Self::RegType,
name: &'static CStr,
module: &'static ThisModule,
) -> Result;
/// Unregisters a driver previously registered with [`DriverOps::register`].
///
/// # Safety
///
/// `reg` must point to valid writable memory, initialised by a previous successful call to
/// [`DriverOps::register`].
unsafe fn unregister(reg: *mut Self::RegType);
}
/// The registration of a driver.
pub struct Registration<T: DriverOps> {
is_registered: bool,
concrete_reg: UnsafeCell<T::RegType>,
}
// SAFETY: `Registration` has no fields or methods accessible via `&Registration`, so it is safe to
// share references to it with multiple threads as nothing can be done.
unsafe impl<T: DriverOps> Sync for Registration<T> {}
impl<T: DriverOps> Registration<T> {
/// Creates a new instance of the registration object.
pub fn new() -> Self {
Self {
is_registered: false,
concrete_reg: UnsafeCell::new(T::RegType::default()),
}
}
/// Allocates a pinned registration object and registers it.
///
/// Returns a pinned heap-allocated representation of the registration.
pub fn new_pinned(name: &'static CStr, module: &'static ThisModule) -> Result<Pin<Box<Self>>> {
let mut reg = Pin::from(Box::try_new(Self::new())?);
reg.as_mut().register(name, module)?;
Ok(reg)
}
/// Registers a driver with its subsystem.
///
/// It must be pinned because the memory block that represents the registration is potentially
/// self-referential.
pub fn register(
self: Pin<&mut Self>,
name: &'static CStr,
module: &'static ThisModule,
) -> Result {
// SAFETY: We never move out of `this`.
let this = unsafe { self.get_unchecked_mut() };
if this.is_registered {
// Already registered.
return Err(EINVAL);
}
// SAFETY: `concrete_reg` was initialised via its default constructor. It is only freed
// after `Self::drop` is called, which first calls `T::unregister`.
unsafe { T::register(this.concrete_reg.get(), name, module) }?;
this.is_registered = true;
Ok(())
}
}
impl<T: DriverOps> Default for Registration<T> {
fn default() -> Self {
Self::new()
}
}
impl<T: DriverOps> Drop for Registration<T> {
fn drop(&mut self) {
if self.is_registered {
// SAFETY: This path only runs if a previous call to `T::register` completed
// successfully.
unsafe { T::unregister(self.concrete_reg.get()) };
}
}
}
/// Conversion from a device id to a raw device id.
///
/// This is meant to be implemented by buses/subsystems so that they can use [`IdTable`] to
/// guarantee (at compile-time) zero-termination of device id tables provided by drivers.
///
/// # Safety
///
/// Implementers must ensure that:
/// - [`RawDeviceId::ZERO`] is actually a zeroed-out version of the raw device id.
/// - [`RawDeviceId::to_rawid`] stores `offset` in the context/data field of the raw device id so
/// that buses can recover the pointer to the data.
#[const_trait]
pub unsafe trait RawDeviceId {
/// The raw type that holds the device id.
///
/// Id tables created from [`Self`] are going to hold this type in its zero-terminated array.
type RawType: Copy;
/// A zeroed-out representation of the raw device id.
///
/// Id tables created from [`Self`] use [`Self::ZERO`] as the sentinel to indicate the end of
/// the table.
const ZERO: Self::RawType;
/// Converts an id into a raw id.
///
/// `offset` is the offset from the memory location where the raw device id is stored to the
/// location where its associated context information is stored. Implementations must store
/// this in the appropriate context/data field of the raw type.
fn to_rawid(&self, offset: isize) -> Self::RawType;
}
/// A zero-terminated device id array, followed by context data.
#[repr(C)]
pub struct IdArray<T: RawDeviceId, U, const N: usize> {
ids: [T::RawType; N],
sentinel: T::RawType,
id_infos: [Option<U>; N],
}
impl<T: RawDeviceId, U, const N: usize> IdArray<T, U, N> {
/// Creates a new instance of the array.
///
/// The contents are derived from the given identifiers and context information.
pub const fn new(ids: [T; N], infos: [Option<U>; N]) -> Self
where
T: ~const RawDeviceId + Copy,
{
let mut array = Self {
ids: [T::ZERO; N],
sentinel: T::ZERO,
id_infos: infos,
};
let mut i = 0usize;
while i < N {
// SAFETY: Both pointers are within `array` (or one byte beyond), consequently they are
// derived from the same allocated object. We are using a `u8` pointer, whose size 1,
// so the pointers are necessarily 1-byte aligned.
let offset = unsafe {
(&array.id_infos[i] as *const _ as *const u8)
.offset_from(&array.ids[i] as *const _ as _)
};
array.ids[i] = ids[i].to_rawid(offset);
i += 1;
}
array
}
/// Returns an `IdTable` backed by `self`.
///
/// This is used to essentially erase the array size.
pub const fn as_table(&self) -> IdTable<'_, T, U> {
IdTable {
first: &self.ids[0],
_p: PhantomData,
}
}
}
/// A device id table.
///
/// The table is guaranteed to be zero-terminated and to be followed by an array of context data of
/// type `Option<U>`.
pub struct IdTable<'a, T: RawDeviceId, U> {
first: &'a T::RawType,
_p: PhantomData<&'a U>,
}
impl<T: RawDeviceId, U> const AsRef<T::RawType> for IdTable<'_, T, U> {
fn as_ref(&self) -> &T::RawType {
self.first
}
}
/// Counts the number of parenthesis-delimited, comma-separated items.
///
/// # Examples
///
/// ```
/// # use kernel::count_paren_items;
///
/// assert_eq!(0, count_paren_items!());
/// assert_eq!(1, count_paren_items!((A)));
/// assert_eq!(1, count_paren_items!((A),));
/// assert_eq!(2, count_paren_items!((A), (B)));
/// assert_eq!(2, count_paren_items!((A), (B),));
/// assert_eq!(3, count_paren_items!((A), (B), (C)));
/// assert_eq!(3, count_paren_items!((A), (B), (C),));
/// ```
#[macro_export]
macro_rules! count_paren_items {
(($($item:tt)*), $($remaining:tt)*) => { 1 + $crate::count_paren_items!($($remaining)*) };
(($($item:tt)*)) => { 1 };
() => { 0 };
}
/// Converts a comma-separated list of pairs into an array with the first element. That is, it
/// discards the second element of the pair.
///
/// Additionally, it automatically introduces a type if the first element is warpped in curly
/// braces, for example, if it's `{v: 10}`, it becomes `X { v: 10 }`; this is to avoid repeating
/// the type.
///
/// # Examples
///
/// ```
/// # use kernel::first_item;
///
/// #[derive(PartialEq, Debug)]
/// struct X {
/// v: u32,
/// }
///
/// assert_eq!([] as [X; 0], first_item!(X, ));
/// assert_eq!([X { v: 10 }], first_item!(X, ({ v: 10 }, Y)));
/// assert_eq!([X { v: 10 }], first_item!(X, ({ v: 10 }, Y),));
/// assert_eq!([X { v: 10 }], first_item!(X, (X { v: 10 }, Y)));
/// assert_eq!([X { v: 10 }], first_item!(X, (X { v: 10 }, Y),));
/// assert_eq!([X { v: 10 }, X { v: 20 }], first_item!(X, ({ v: 10 }, Y), ({ v: 20 }, Y)));
/// assert_eq!([X { v: 10 }, X { v: 20 }], first_item!(X, ({ v: 10 }, Y), ({ v: 20 }, Y),));
/// assert_eq!([X { v: 10 }, X { v: 20 }], first_item!(X, (X { v: 10 }, Y), (X { v: 20 }, Y)));
/// assert_eq!([X { v: 10 }, X { v: 20 }], first_item!(X, (X { v: 10 }, Y), (X { v: 20 }, Y),));
/// assert_eq!([X { v: 10 }, X { v: 20 }, X { v: 30 }],
/// first_item!(X, ({ v: 10 }, Y), ({ v: 20 }, Y), ({v: 30}, Y)));
/// assert_eq!([X { v: 10 }, X { v: 20 }, X { v: 30 }],
/// first_item!(X, ({ v: 10 }, Y), ({ v: 20 }, Y), ({v: 30}, Y),));
/// assert_eq!([X { v: 10 }, X { v: 20 }, X { v: 30 }],
/// first_item!(X, (X { v: 10 }, Y), (X { v: 20 }, Y), (X {v: 30}, Y)));
/// assert_eq!([X { v: 10 }, X { v: 20 }, X { v: 30 }],
/// first_item!(X, (X { v: 10 }, Y), (X { v: 20 }, Y), (X {v: 30}, Y),));
/// ```
#[macro_export]
macro_rules! first_item {
($id_type:ty, $(({$($first:tt)*}, $second:expr)),* $(,)?) => {
{
type IdType = $id_type;
[$(IdType{$($first)*},)*]
}
};
($id_type:ty, $(($first:expr, $second:expr)),* $(,)?) => { [$($first,)*] };
}
/// Converts a comma-separated list of pairs into an array with the second element. That is, it
/// discards the first element of the pair.
///
/// # Examples
///
/// ```
/// # use kernel::second_item;
///
/// assert_eq!([] as [u32; 0], second_item!());
/// assert_eq!([10u32], second_item!((X, 10u32)));
/// assert_eq!([10u32], second_item!((X, 10u32),));
/// assert_eq!([10u32], second_item!(({ X }, 10u32)));
/// assert_eq!([10u32], second_item!(({ X }, 10u32),));
/// assert_eq!([10u32, 20], second_item!((X, 10u32), (X, 20)));
/// assert_eq!([10u32, 20], second_item!((X, 10u32), (X, 20),));
/// assert_eq!([10u32, 20], second_item!(({ X }, 10u32), ({ X }, 20)));
/// assert_eq!([10u32, 20], second_item!(({ X }, 10u32), ({ X }, 20),));
/// assert_eq!([10u32, 20, 30], second_item!((X, 10u32), (X, 20), (X, 30)));
/// assert_eq!([10u32, 20, 30], second_item!((X, 10u32), (X, 20), (X, 30),));
/// assert_eq!([10u32, 20, 30], second_item!(({ X }, 10u32), ({ X }, 20), ({ X }, 30)));
/// assert_eq!([10u32, 20, 30], second_item!(({ X }, 10u32), ({ X }, 20), ({ X }, 30),));
/// ```
#[macro_export]
macro_rules! second_item {
($(({$($first:tt)*}, $second:expr)),* $(,)?) => { [$($second,)*] };
($(($first:expr, $second:expr)),* $(,)?) => { [$($second,)*] };
}
/// Defines a new constant [`IdArray`] with a concise syntax.
///
/// It is meant to be used by buses and subsystems to create a similar macro with their device id
/// type already specified, i.e., with fewer parameters to the end user.
///
/// # Examples
///
// TODO: Exported but not usable by kernel modules (requires `const_trait_impl`).
/// ```ignore
/// #![feature(const_trait_impl)]
/// # use kernel::{define_id_array, driver::RawDeviceId};
///
/// #[derive(Copy, Clone)]
/// struct Id(u32);
///
/// // SAFETY: `ZERO` is all zeroes and `to_rawid` stores `offset` as the second element of the raw
/// // device id pair.
/// unsafe impl const RawDeviceId for Id {
/// type RawType = (u64, isize);
/// const ZERO: Self::RawType = (0, 0);
/// fn to_rawid(&self, offset: isize) -> Self::RawType {
/// (self.0 as u64 + 1, offset)
/// }
/// }
///
/// define_id_array!(A1, Id, (), []);
/// define_id_array!(A2, Id, &'static [u8], [(Id(10), None)]);
/// define_id_array!(A3, Id, &'static [u8], [(Id(10), Some(b"id1")), ]);
/// define_id_array!(A4, Id, &'static [u8], [(Id(10), Some(b"id1")), (Id(20), Some(b"id2"))]);
/// define_id_array!(A5, Id, &'static [u8], [(Id(10), Some(b"id1")), (Id(20), Some(b"id2")), ]);
/// define_id_array!(A6, Id, &'static [u8], [(Id(10), None), (Id(20), Some(b"id2")), ]);
/// define_id_array!(A7, Id, &'static [u8], [(Id(10), Some(b"id1")), (Id(20), None), ]);
/// define_id_array!(A8, Id, &'static [u8], [(Id(10), None), (Id(20), None), ]);
/// ```
#[macro_export]
macro_rules! define_id_array {
($table_name:ident, $id_type:ty, $data_type:ty, [ $($t:tt)* ]) => {
const $table_name:
$crate::driver::IdArray<$id_type, $data_type, { $crate::count_paren_items!($($t)*) }> =
$crate::driver::IdArray::new(
$crate::first_item!($id_type, $($t)*), $crate::second_item!($($t)*));
};
}
/// Defines a new constant [`IdTable`] with a concise syntax.
///
/// It is meant to be used by buses and subsystems to create a similar macro with their device id
/// type already specified, i.e., with fewer parameters to the end user.
///
/// # Examples
///
// TODO: Exported but not usable by kernel modules (requires `const_trait_impl`).
/// ```ignore
/// #![feature(const_trait_impl)]
/// # use kernel::{define_id_table, driver::RawDeviceId};
///
/// #[derive(Copy, Clone)]
/// struct Id(u32);
///
/// // SAFETY: `ZERO` is all zeroes and `to_rawid` stores `offset` as the second element of the raw
/// // device id pair.
/// unsafe impl const RawDeviceId for Id {
/// type RawType = (u64, isize);
/// const ZERO: Self::RawType = (0, 0);
/// fn to_rawid(&self, offset: isize) -> Self::RawType {
/// (self.0 as u64 + 1, offset)
/// }
/// }
///
/// define_id_table!(T1, Id, &'static [u8], [(Id(10), None)]);
/// define_id_table!(T2, Id, &'static [u8], [(Id(10), Some(b"id1")), ]);
/// define_id_table!(T3, Id, &'static [u8], [(Id(10), Some(b"id1")), (Id(20), Some(b"id2"))]);
/// define_id_table!(T4, Id, &'static [u8], [(Id(10), Some(b"id1")), (Id(20), Some(b"id2")), ]);
/// define_id_table!(T5, Id, &'static [u8], [(Id(10), None), (Id(20), Some(b"id2")), ]);
/// define_id_table!(T6, Id, &'static [u8], [(Id(10), Some(b"id1")), (Id(20), None), ]);
/// define_id_table!(T7, Id, &'static [u8], [(Id(10), None), (Id(20), None), ]);
/// ```
#[macro_export]
macro_rules! define_id_table {
($table_name:ident, $id_type:ty, $data_type:ty, [ $($t:tt)* ]) => {
const $table_name: Option<$crate::driver::IdTable<'static, $id_type, $data_type>> = {
$crate::define_id_array!(ARRAY, $id_type, $data_type, [ $($t)* ]);
Some(ARRAY.as_table())
};
};
}
/// Custom code within device removal.
pub trait DeviceRemoval {
/// Cleans resources up when the device is removed.
///
/// This is called when a device is removed and offers implementers the chance to run some code
/// that cleans state up.
fn device_remove(&self);
}
impl DeviceRemoval for () {
fn device_remove(&self) {}
}
impl<T: DeviceRemoval> DeviceRemoval for Arc<T> {
fn device_remove(&self) {
self.deref().device_remove();
}
}
impl<T: DeviceRemoval> DeviceRemoval for Box<T> {
fn device_remove(&self) {
self.deref().device_remove();
}
}
/// A kernel module that only registers the given driver on init.
///
/// This is a helper struct to make it easier to define single-functionality modules, in this case,
/// modules that offer a single driver.
pub struct Module<T: DriverOps> {
_driver: Pin<Box<Registration<T>>>,
}
impl<T: DriverOps> crate::Module for Module<T> {
fn init(name: &'static CStr, module: &'static ThisModule) -> Result<Self> {
Ok(Self {
_driver: Registration::new_pinned(name, module)?,
})
}
}
/// Declares a kernel module that exposes a single driver.
///
/// It is meant to be used as a helper by other subsystems so they can more easily expose their own
/// macros.
#[macro_export]
macro_rules! module_driver {
(<$gen_type:ident>, $driver_ops:ty, { type: $type:ty, $($f:tt)* }) => {
type Ops<$gen_type> = $driver_ops;
type ModuleType = $crate::driver::Module<Ops<$type>>;
$crate::prelude::module! {
type: ModuleType,
$($f)*
}
}
}