1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
use super::sealed::Sealed;
use crate::simd::{
intrinsics, LaneCount, Mask, Simd, SimdElement, SimdPartialEq, SimdPartialOrd,
SupportedLaneCount,
};
/// Operations on SIMD vectors of floats.
pub trait SimdFloat: Copy + Sealed {
/// Mask type used for manipulating this SIMD vector type.
type Mask;
/// Scalar type contained by this SIMD vector type.
type Scalar;
/// Bit representation of this SIMD vector type.
type Bits;
/// Raw transmutation to an unsigned integer vector type with the
/// same size and number of lanes.
#[must_use = "method returns a new vector and does not mutate the original value"]
fn to_bits(self) -> Self::Bits;
/// Raw transmutation from an unsigned integer vector type with the
/// same size and number of lanes.
#[must_use = "method returns a new vector and does not mutate the original value"]
fn from_bits(bits: Self::Bits) -> Self;
/// Produces a vector where every lane has the absolute value of the
/// equivalently-indexed lane in `self`.
#[must_use = "method returns a new vector and does not mutate the original value"]
fn abs(self) -> Self;
/// Takes the reciprocal (inverse) of each lane, `1/x`.
#[must_use = "method returns a new vector and does not mutate the original value"]
fn recip(self) -> Self;
/// Converts each lane from radians to degrees.
#[must_use = "method returns a new vector and does not mutate the original value"]
fn to_degrees(self) -> Self;
/// Converts each lane from degrees to radians.
#[must_use = "method returns a new vector and does not mutate the original value"]
fn to_radians(self) -> Self;
/// Returns true for each lane if it has a positive sign, including
/// `+0.0`, `NaN`s with positive sign bit and positive infinity.
#[must_use = "method returns a new mask and does not mutate the original value"]
fn is_sign_positive(self) -> Self::Mask;
/// Returns true for each lane if it has a negative sign, including
/// `-0.0`, `NaN`s with negative sign bit and negative infinity.
#[must_use = "method returns a new mask and does not mutate the original value"]
fn is_sign_negative(self) -> Self::Mask;
/// Returns true for each lane if its value is `NaN`.
#[must_use = "method returns a new mask and does not mutate the original value"]
fn is_nan(self) -> Self::Mask;
/// Returns true for each lane if its value is positive infinity or negative infinity.
#[must_use = "method returns a new mask and does not mutate the original value"]
fn is_infinite(self) -> Self::Mask;
/// Returns true for each lane if its value is neither infinite nor `NaN`.
#[must_use = "method returns a new mask and does not mutate the original value"]
fn is_finite(self) -> Self::Mask;
/// Returns true for each lane if its value is subnormal.
#[must_use = "method returns a new mask and does not mutate the original value"]
fn is_subnormal(self) -> Self::Mask;
/// Returns true for each lane if its value is neither zero, infinite,
/// subnormal, nor `NaN`.
#[must_use = "method returns a new mask and does not mutate the original value"]
fn is_normal(self) -> Self::Mask;
/// Replaces each lane with a number that represents its sign.
///
/// * `1.0` if the number is positive, `+0.0`, or `INFINITY`
/// * `-1.0` if the number is negative, `-0.0`, or `NEG_INFINITY`
/// * `NAN` if the number is `NAN`
#[must_use = "method returns a new vector and does not mutate the original value"]
fn signum(self) -> Self;
/// Returns each lane with the magnitude of `self` and the sign of `sign`.
///
/// For any lane containing a `NAN`, a `NAN` with the sign of `sign` is returned.
#[must_use = "method returns a new vector and does not mutate the original value"]
fn copysign(self, sign: Self) -> Self;
/// Returns the minimum of each lane.
///
/// If one of the values is `NAN`, then the other value is returned.
#[must_use = "method returns a new vector and does not mutate the original value"]
fn simd_min(self, other: Self) -> Self;
/// Returns the maximum of each lane.
///
/// If one of the values is `NAN`, then the other value is returned.
#[must_use = "method returns a new vector and does not mutate the original value"]
fn simd_max(self, other: Self) -> Self;
/// Restrict each lane to a certain interval unless it is NaN.
///
/// For each lane in `self`, returns the corresponding lane in `max` if the lane is
/// greater than `max`, and the corresponding lane in `min` if the lane is less
/// than `min`. Otherwise returns the lane in `self`.
#[must_use = "method returns a new vector and does not mutate the original value"]
fn simd_clamp(self, min: Self, max: Self) -> Self;
/// Returns the sum of the lanes of the vector.
///
/// # Examples
///
/// ```
/// # #![feature(portable_simd)]
/// # #[cfg(feature = "as_crate")] use core_simd::simd;
/// # #[cfg(not(feature = "as_crate"))] use core::simd;
/// # use simd::{f32x2, SimdFloat};
/// let v = f32x2::from_array([1., 2.]);
/// assert_eq!(v.reduce_sum(), 3.);
/// ```
fn reduce_sum(self) -> Self::Scalar;
/// Reducing multiply. Returns the product of the lanes of the vector.
///
/// # Examples
///
/// ```
/// # #![feature(portable_simd)]
/// # #[cfg(feature = "as_crate")] use core_simd::simd;
/// # #[cfg(not(feature = "as_crate"))] use core::simd;
/// # use simd::{f32x2, SimdFloat};
/// let v = f32x2::from_array([3., 4.]);
/// assert_eq!(v.reduce_product(), 12.);
/// ```
fn reduce_product(self) -> Self::Scalar;
/// Returns the maximum lane in the vector.
///
/// Returns values based on equality, so a vector containing both `0.` and `-0.` may
/// return either.
///
/// This function will not return `NaN` unless all lanes are `NaN`.
///
/// # Examples
///
/// ```
/// # #![feature(portable_simd)]
/// # #[cfg(feature = "as_crate")] use core_simd::simd;
/// # #[cfg(not(feature = "as_crate"))] use core::simd;
/// # use simd::{f32x2, SimdFloat};
/// let v = f32x2::from_array([1., 2.]);
/// assert_eq!(v.reduce_max(), 2.);
///
/// // NaN values are skipped...
/// let v = f32x2::from_array([1., f32::NAN]);
/// assert_eq!(v.reduce_max(), 1.);
///
/// // ...unless all values are NaN
/// let v = f32x2::from_array([f32::NAN, f32::NAN]);
/// assert!(v.reduce_max().is_nan());
/// ```
fn reduce_max(self) -> Self::Scalar;
/// Returns the minimum lane in the vector.
///
/// Returns values based on equality, so a vector containing both `0.` and `-0.` may
/// return either.
///
/// This function will not return `NaN` unless all lanes are `NaN`.
///
/// # Examples
///
/// ```
/// # #![feature(portable_simd)]
/// # #[cfg(feature = "as_crate")] use core_simd::simd;
/// # #[cfg(not(feature = "as_crate"))] use core::simd;
/// # use simd::{f32x2, SimdFloat};
/// let v = f32x2::from_array([3., 7.]);
/// assert_eq!(v.reduce_min(), 3.);
///
/// // NaN values are skipped...
/// let v = f32x2::from_array([1., f32::NAN]);
/// assert_eq!(v.reduce_min(), 1.);
///
/// // ...unless all values are NaN
/// let v = f32x2::from_array([f32::NAN, f32::NAN]);
/// assert!(v.reduce_min().is_nan());
/// ```
fn reduce_min(self) -> Self::Scalar;
}
macro_rules! impl_trait {
{ $($ty:ty { bits: $bits_ty:ty, mask: $mask_ty:ty }),* } => {
$(
impl<const LANES: usize> Sealed for Simd<$ty, LANES>
where
LaneCount<LANES>: SupportedLaneCount,
{
}
impl<const LANES: usize> SimdFloat for Simd<$ty, LANES>
where
LaneCount<LANES>: SupportedLaneCount,
{
type Mask = Mask<<$mask_ty as SimdElement>::Mask, LANES>;
type Scalar = $ty;
type Bits = Simd<$bits_ty, LANES>;
#[inline]
fn to_bits(self) -> Simd<$bits_ty, LANES> {
assert_eq!(core::mem::size_of::<Self>(), core::mem::size_of::<Self::Bits>());
// Safety: transmuting between vector types is safe
unsafe { core::mem::transmute_copy(&self) }
}
#[inline]
fn from_bits(bits: Simd<$bits_ty, LANES>) -> Self {
assert_eq!(core::mem::size_of::<Self>(), core::mem::size_of::<Self::Bits>());
// Safety: transmuting between vector types is safe
unsafe { core::mem::transmute_copy(&bits) }
}
#[inline]
fn abs(self) -> Self {
// Safety: `self` is a float vector
unsafe { intrinsics::simd_fabs(self) }
}
#[inline]
fn recip(self) -> Self {
Self::splat(1.0) / self
}
#[inline]
fn to_degrees(self) -> Self {
// to_degrees uses a special constant for better precision, so extract that constant
self * Self::splat(Self::Scalar::to_degrees(1.))
}
#[inline]
fn to_radians(self) -> Self {
self * Self::splat(Self::Scalar::to_radians(1.))
}
#[inline]
fn is_sign_positive(self) -> Self::Mask {
!self.is_sign_negative()
}
#[inline]
fn is_sign_negative(self) -> Self::Mask {
let sign_bits = self.to_bits() & Simd::splat((!0 >> 1) + 1);
sign_bits.simd_gt(Simd::splat(0))
}
#[inline]
fn is_nan(self) -> Self::Mask {
self.simd_ne(self)
}
#[inline]
fn is_infinite(self) -> Self::Mask {
self.abs().simd_eq(Self::splat(Self::Scalar::INFINITY))
}
#[inline]
fn is_finite(self) -> Self::Mask {
self.abs().simd_lt(Self::splat(Self::Scalar::INFINITY))
}
#[inline]
fn is_subnormal(self) -> Self::Mask {
self.abs().simd_ne(Self::splat(0.0)) & (self.to_bits() & Self::splat(Self::Scalar::INFINITY).to_bits()).simd_eq(Simd::splat(0))
}
#[inline]
#[must_use = "method returns a new mask and does not mutate the original value"]
fn is_normal(self) -> Self::Mask {
!(self.abs().simd_eq(Self::splat(0.0)) | self.is_nan() | self.is_subnormal() | self.is_infinite())
}
#[inline]
fn signum(self) -> Self {
self.is_nan().select(Self::splat(Self::Scalar::NAN), Self::splat(1.0).copysign(self))
}
#[inline]
fn copysign(self, sign: Self) -> Self {
let sign_bit = sign.to_bits() & Self::splat(-0.).to_bits();
let magnitude = self.to_bits() & !Self::splat(-0.).to_bits();
Self::from_bits(sign_bit | magnitude)
}
#[inline]
fn simd_min(self, other: Self) -> Self {
// Safety: `self` and `other` are float vectors
unsafe { intrinsics::simd_fmin(self, other) }
}
#[inline]
fn simd_max(self, other: Self) -> Self {
// Safety: `self` and `other` are floating point vectors
unsafe { intrinsics::simd_fmax(self, other) }
}
#[inline]
fn simd_clamp(self, min: Self, max: Self) -> Self {
assert!(
min.simd_le(max).all(),
"each lane in `min` must be less than or equal to the corresponding lane in `max`",
);
let mut x = self;
x = x.simd_lt(min).select(min, x);
x = x.simd_gt(max).select(max, x);
x
}
#[inline]
fn reduce_sum(self) -> Self::Scalar {
// LLVM sum is inaccurate on i586
if cfg!(all(target_arch = "x86", not(target_feature = "sse2"))) {
self.as_array().iter().sum()
} else {
// Safety: `self` is a float vector
unsafe { intrinsics::simd_reduce_add_ordered(self, 0.) }
}
}
#[inline]
fn reduce_product(self) -> Self::Scalar {
// LLVM product is inaccurate on i586
if cfg!(all(target_arch = "x86", not(target_feature = "sse2"))) {
self.as_array().iter().product()
} else {
// Safety: `self` is a float vector
unsafe { intrinsics::simd_reduce_mul_ordered(self, 1.) }
}
}
#[inline]
fn reduce_max(self) -> Self::Scalar {
// Safety: `self` is a float vector
unsafe { intrinsics::simd_reduce_max(self) }
}
#[inline]
fn reduce_min(self) -> Self::Scalar {
// Safety: `self` is a float vector
unsafe { intrinsics::simd_reduce_min(self) }
}
}
)*
}
}
impl_trait! { f32 { bits: u32, mask: i32 }, f64 { bits: u64, mask: i64 } }