1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
// SPDX-License-Identifier: Apache-2.0 OR MIT

//! Memory allocation APIs

#![stable(feature = "alloc_module", since = "1.28.0")]

#[cfg(not(test))]
use core::intrinsics;
use core::intrinsics::{min_align_of_val, size_of_val};

use core::ptr::Unique;
#[cfg(not(test))]
use core::ptr::{self, NonNull};

#[stable(feature = "alloc_module", since = "1.28.0")]
#[doc(inline)]
pub use core::alloc::*;

use core::marker::Destruct;

#[cfg(test)]
mod tests;

extern "Rust" {
    // These are the magic symbols to call the global allocator.  rustc generates
    // them to call `__rg_alloc` etc. if there is a `#[global_allocator]` attribute
    // (the code expanding that attribute macro generates those functions), or to call
    // the default implementations in libstd (`__rdl_alloc` etc. in `library/std/src/alloc.rs`)
    // otherwise.
    // The rustc fork of LLVM 14 and earlier also special-cases these function names to be able to optimize them
    // like `malloc`, `realloc`, and `free`, respectively.
    #[rustc_allocator]
    #[cfg_attr(not(bootstrap), rustc_nounwind)]
    #[cfg_attr(bootstrap, rustc_allocator_nounwind)]
    fn __rust_alloc(size: usize, align: usize) -> *mut u8;
    #[rustc_deallocator]
    #[cfg_attr(not(bootstrap), rustc_nounwind)]
    #[cfg_attr(bootstrap, rustc_allocator_nounwind)]
    fn __rust_dealloc(ptr: *mut u8, size: usize, align: usize);
    #[rustc_reallocator]
    #[cfg_attr(not(bootstrap), rustc_nounwind)]
    #[cfg_attr(bootstrap, rustc_allocator_nounwind)]
    fn __rust_realloc(ptr: *mut u8, old_size: usize, align: usize, new_size: usize) -> *mut u8;
    #[rustc_allocator_zeroed]
    #[cfg_attr(not(bootstrap), rustc_nounwind)]
    #[cfg_attr(bootstrap, rustc_allocator_nounwind)]
    fn __rust_alloc_zeroed(size: usize, align: usize) -> *mut u8;
}

/// The global memory allocator.
///
/// This type implements the [`Allocator`] trait by forwarding calls
/// to the allocator registered with the `#[global_allocator]` attribute
/// if there is one, or the `std` crate’s default.
///
/// Note: while this type is unstable, the functionality it provides can be
/// accessed through the [free functions in `alloc`](self#functions).
#[unstable(feature = "allocator_api", issue = "32838")]
#[derive(Copy, Clone, Default, Debug)]
#[cfg(not(test))]
pub struct Global;

#[cfg(test)]
pub use std::alloc::Global;

/// Allocate memory with the global allocator.
///
/// This function forwards calls to the [`GlobalAlloc::alloc`] method
/// of the allocator registered with the `#[global_allocator]` attribute
/// if there is one, or the `std` crate’s default.
///
/// This function is expected to be deprecated in favor of the `alloc` method
/// of the [`Global`] type when it and the [`Allocator`] trait become stable.
///
/// # Safety
///
/// See [`GlobalAlloc::alloc`].
///
/// # Examples
///
/// ```
/// use std::alloc::{alloc, dealloc, handle_alloc_error, Layout};
///
/// unsafe {
///     let layout = Layout::new::<u16>();
///     let ptr = alloc(layout);
///     if ptr.is_null() {
///         handle_alloc_error(layout);
///     }
///
///     *(ptr as *mut u16) = 42;
///     assert_eq!(*(ptr as *mut u16), 42);
///
///     dealloc(ptr, layout);
/// }
/// ```
#[stable(feature = "global_alloc", since = "1.28.0")]
#[must_use = "losing the pointer will leak memory"]
#[inline]
pub unsafe fn alloc(layout: Layout) -> *mut u8 {
    unsafe { __rust_alloc(layout.size(), layout.align()) }
}

/// Deallocate memory with the global allocator.
///
/// This function forwards calls to the [`GlobalAlloc::dealloc`] method
/// of the allocator registered with the `#[global_allocator]` attribute
/// if there is one, or the `std` crate’s default.
///
/// This function is expected to be deprecated in favor of the `dealloc` method
/// of the [`Global`] type when it and the [`Allocator`] trait become stable.
///
/// # Safety
///
/// See [`GlobalAlloc::dealloc`].
#[stable(feature = "global_alloc", since = "1.28.0")]
#[inline]
pub unsafe fn dealloc(ptr: *mut u8, layout: Layout) {
    unsafe { __rust_dealloc(ptr, layout.size(), layout.align()) }
}

/// Reallocate memory with the global allocator.
///
/// This function forwards calls to the [`GlobalAlloc::realloc`] method
/// of the allocator registered with the `#[global_allocator]` attribute
/// if there is one, or the `std` crate’s default.
///
/// This function is expected to be deprecated in favor of the `realloc` method
/// of the [`Global`] type when it and the [`Allocator`] trait become stable.
///
/// # Safety
///
/// See [`GlobalAlloc::realloc`].
#[stable(feature = "global_alloc", since = "1.28.0")]
#[must_use = "losing the pointer will leak memory"]
#[inline]
pub unsafe fn realloc(ptr: *mut u8, layout: Layout, new_size: usize) -> *mut u8 {
    unsafe { __rust_realloc(ptr, layout.size(), layout.align(), new_size) }
}

/// Allocate zero-initialized memory with the global allocator.
///
/// This function forwards calls to the [`GlobalAlloc::alloc_zeroed`] method
/// of the allocator registered with the `#[global_allocator]` attribute
/// if there is one, or the `std` crate’s default.
///
/// This function is expected to be deprecated in favor of the `alloc_zeroed` method
/// of the [`Global`] type when it and the [`Allocator`] trait become stable.
///
/// # Safety
///
/// See [`GlobalAlloc::alloc_zeroed`].
///
/// # Examples
///
/// ```
/// use std::alloc::{alloc_zeroed, dealloc, Layout};
///
/// unsafe {
///     let layout = Layout::new::<u16>();
///     let ptr = alloc_zeroed(layout);
///
///     assert_eq!(*(ptr as *mut u16), 0);
///
///     dealloc(ptr, layout);
/// }
/// ```
#[stable(feature = "global_alloc", since = "1.28.0")]
#[must_use = "losing the pointer will leak memory"]
#[inline]
pub unsafe fn alloc_zeroed(layout: Layout) -> *mut u8 {
    unsafe { __rust_alloc_zeroed(layout.size(), layout.align()) }
}

#[cfg(not(test))]
impl Global {
    #[inline]
    fn alloc_impl(&self, layout: Layout, zeroed: bool) -> Result<NonNull<[u8]>, AllocError> {
        match layout.size() {
            0 => Ok(NonNull::slice_from_raw_parts(layout.dangling(), 0)),
            // SAFETY: `layout` is non-zero in size,
            size => unsafe {
                let raw_ptr = if zeroed { alloc_zeroed(layout) } else { alloc(layout) };
                let ptr = NonNull::new(raw_ptr).ok_or(AllocError)?;
                Ok(NonNull::slice_from_raw_parts(ptr, size))
            },
        }
    }

    // SAFETY: Same as `Allocator::grow`
    #[inline]
    unsafe fn grow_impl(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
        zeroed: bool,
    ) -> Result<NonNull<[u8]>, AllocError> {
        debug_assert!(
            new_layout.size() >= old_layout.size(),
            "`new_layout.size()` must be greater than or equal to `old_layout.size()`"
        );

        match old_layout.size() {
            0 => self.alloc_impl(new_layout, zeroed),

            // SAFETY: `new_size` is non-zero as `old_size` is greater than or equal to `new_size`
            // as required by safety conditions. Other conditions must be upheld by the caller
            old_size if old_layout.align() == new_layout.align() => unsafe {
                let new_size = new_layout.size();

                // `realloc` probably checks for `new_size >= old_layout.size()` or something similar.
                intrinsics::assume(new_size >= old_layout.size());

                let raw_ptr = realloc(ptr.as_ptr(), old_layout, new_size);
                let ptr = NonNull::new(raw_ptr).ok_or(AllocError)?;
                if zeroed {
                    raw_ptr.add(old_size).write_bytes(0, new_size - old_size);
                }
                Ok(NonNull::slice_from_raw_parts(ptr, new_size))
            },

            // SAFETY: because `new_layout.size()` must be greater than or equal to `old_size`,
            // both the old and new memory allocation are valid for reads and writes for `old_size`
            // bytes. Also, because the old allocation wasn't yet deallocated, it cannot overlap
            // `new_ptr`. Thus, the call to `copy_nonoverlapping` is safe. The safety contract
            // for `dealloc` must be upheld by the caller.
            old_size => unsafe {
                let new_ptr = self.alloc_impl(new_layout, zeroed)?;
                ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_mut_ptr(), old_size);
                self.deallocate(ptr, old_layout);
                Ok(new_ptr)
            },
        }
    }
}

#[unstable(feature = "allocator_api", issue = "32838")]
#[cfg(not(test))]
unsafe impl Allocator for Global {
    #[inline]
    fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
        self.alloc_impl(layout, false)
    }

    #[inline]
    fn allocate_zeroed(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
        self.alloc_impl(layout, true)
    }

    #[inline]
    unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) {
        if layout.size() != 0 {
            // SAFETY: `layout` is non-zero in size,
            // other conditions must be upheld by the caller
            unsafe { dealloc(ptr.as_ptr(), layout) }
        }
    }

    #[inline]
    unsafe fn grow(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        // SAFETY: all conditions must be upheld by the caller
        unsafe { self.grow_impl(ptr, old_layout, new_layout, false) }
    }

    #[inline]
    unsafe fn grow_zeroed(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        // SAFETY: all conditions must be upheld by the caller
        unsafe { self.grow_impl(ptr, old_layout, new_layout, true) }
    }

    #[inline]
    unsafe fn shrink(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        debug_assert!(
            new_layout.size() <= old_layout.size(),
            "`new_layout.size()` must be smaller than or equal to `old_layout.size()`"
        );

        match new_layout.size() {
            // SAFETY: conditions must be upheld by the caller
            0 => unsafe {
                self.deallocate(ptr, old_layout);
                Ok(NonNull::slice_from_raw_parts(new_layout.dangling(), 0))
            },

            // SAFETY: `new_size` is non-zero. Other conditions must be upheld by the caller
            new_size if old_layout.align() == new_layout.align() => unsafe {
                // `realloc` probably checks for `new_size <= old_layout.size()` or something similar.
                intrinsics::assume(new_size <= old_layout.size());

                let raw_ptr = realloc(ptr.as_ptr(), old_layout, new_size);
                let ptr = NonNull::new(raw_ptr).ok_or(AllocError)?;
                Ok(NonNull::slice_from_raw_parts(ptr, new_size))
            },

            // SAFETY: because `new_size` must be smaller than or equal to `old_layout.size()`,
            // both the old and new memory allocation are valid for reads and writes for `new_size`
            // bytes. Also, because the old allocation wasn't yet deallocated, it cannot overlap
            // `new_ptr`. Thus, the call to `copy_nonoverlapping` is safe. The safety contract
            // for `dealloc` must be upheld by the caller.
            new_size => unsafe {
                let new_ptr = self.allocate(new_layout)?;
                ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_mut_ptr(), new_size);
                self.deallocate(ptr, old_layout);
                Ok(new_ptr)
            },
        }
    }
}

/// The allocator for unique pointers.
#[cfg(all(not(no_global_oom_handling), not(test)))]
#[lang = "exchange_malloc"]
#[inline]
unsafe fn exchange_malloc(size: usize, align: usize) -> *mut u8 {
    let layout = unsafe { Layout::from_size_align_unchecked(size, align) };
    match Global.allocate(layout) {
        Ok(ptr) => ptr.as_mut_ptr(),
        Err(_) => handle_alloc_error(layout),
    }
}

#[cfg_attr(not(test), lang = "box_free")]
#[inline]
#[rustc_const_unstable(feature = "const_box", issue = "92521")]
// This signature has to be the same as `Box`, otherwise an ICE will happen.
// When an additional parameter to `Box` is added (like `A: Allocator`), this has to be added here as
// well.
// For example if `Box` is changed to  `struct Box<T: ?Sized, A: Allocator>(Unique<T>, A)`,
// this function has to be changed to `fn box_free<T: ?Sized, A: Allocator>(Unique<T>, A)` as well.
pub(crate) const unsafe fn box_free<T: ?Sized, A: ~const Allocator + ~const Destruct>(
    ptr: Unique<T>,
    alloc: A,
) {
    unsafe {
        let size = size_of_val(ptr.as_ref());
        let align = min_align_of_val(ptr.as_ref());
        let layout = Layout::from_size_align_unchecked(size, align);
        alloc.deallocate(From::from(ptr.cast()), layout)
    }
}

// # Allocation error handler

#[cfg(not(no_global_oom_handling))]
extern "Rust" {
    // This is the magic symbol to call the global alloc error handler.  rustc generates
    // it to call `__rg_oom` if there is a `#[alloc_error_handler]`, or to call the
    // default implementations below (`__rdl_oom`) otherwise.
    fn __rust_alloc_error_handler(size: usize, align: usize) -> !;
}

/// Abort on memory allocation error or failure.
///
/// Callers of memory allocation APIs wishing to abort computation
/// in response to an allocation error are encouraged to call this function,
/// rather than directly invoking `panic!` or similar.
///
/// The default behavior of this function is to print a message to standard error
/// and abort the process.
/// It can be replaced with [`set_alloc_error_hook`] and [`take_alloc_error_hook`].
///
/// [`set_alloc_error_hook`]: ../../std/alloc/fn.set_alloc_error_hook.html
/// [`take_alloc_error_hook`]: ../../std/alloc/fn.take_alloc_error_hook.html
#[stable(feature = "global_alloc", since = "1.28.0")]
#[rustc_const_unstable(feature = "const_alloc_error", issue = "92523")]
#[cfg(all(not(no_global_oom_handling), not(test)))]
#[cold]
pub const fn handle_alloc_error(layout: Layout) -> ! {
    const fn ct_error(_: Layout) -> ! {
        panic!("allocation failed");
    }

    fn rt_error(layout: Layout) -> ! {
        unsafe {
            __rust_alloc_error_handler(layout.size(), layout.align());
        }
    }

    unsafe { core::intrinsics::const_eval_select((layout,), ct_error, rt_error) }
}

// For alloc test `std::alloc::handle_alloc_error` can be used directly.
#[cfg(all(not(no_global_oom_handling), test))]
pub use std::alloc::handle_alloc_error;

#[cfg(all(not(no_global_oom_handling), not(test)))]
#[doc(hidden)]
#[allow(unused_attributes)]
#[unstable(feature = "alloc_internals", issue = "none")]
pub mod __alloc_error_handler {
    use crate::alloc::Layout;

    // called via generated `__rust_alloc_error_handler`

    // if there is no `#[alloc_error_handler]`
    #[rustc_std_internal_symbol]
    pub unsafe fn __rdl_oom(size: usize, _align: usize) -> ! {
        panic!("memory allocation of {size} bytes failed")
    }

    // if there is an `#[alloc_error_handler]`
    #[rustc_std_internal_symbol]
    pub unsafe fn __rg_oom(size: usize, align: usize) -> ! {
        let layout = unsafe { Layout::from_size_align_unchecked(size, align) };
        extern "Rust" {
            #[lang = "oom"]
            fn oom_impl(layout: Layout) -> !;
        }
        unsafe { oom_impl(layout) }
    }
}

/// Specialize clones into pre-allocated, uninitialized memory.
/// Used by `Box::clone` and `Rc`/`Arc::make_mut`.
pub(crate) trait WriteCloneIntoRaw: Sized {
    unsafe fn write_clone_into_raw(&self, target: *mut Self);
}

impl<T: Clone> WriteCloneIntoRaw for T {
    #[inline]
    default unsafe fn write_clone_into_raw(&self, target: *mut Self) {
        // Having allocated *first* may allow the optimizer to create
        // the cloned value in-place, skipping the local and move.
        unsafe { target.write(self.clone()) };
    }
}

impl<T: Copy> WriteCloneIntoRaw for T {
    #[inline]
    unsafe fn write_clone_into_raw(&self, target: *mut Self) {
        // We can always copy in-place, without ever involving a local value.
        unsafe { target.copy_from_nonoverlapping(self, 1) };
    }
}
This documentation is an old archive. Please see https://rust.docs.kernel.org instead.