Module core::arch::x86_641.27.0[][src]

This is supported on x86-64 only.
Expand description

Platform-specific intrinsics for the x86_64 platform.

See the module documentation for more details.

Structs

__m128bhExperimental

128-bit wide set of eight ‘u16’ types, x86-specific

__m256bhExperimental

256-bit wide set of 16 ‘u16’ types, x86-specific

__m512Experimental

512-bit wide set of sixteen f32 types, x86-specific

__m512bhExperimental

512-bit wide set of 32 ‘u16’ types, x86-specific

__m512dExperimental

512-bit wide set of eight f64 types, x86-specific

__m512iExperimental

512-bit wide integer vector type, x86-specific

CpuidResult

Result of the cpuid instruction.

__m128

128-bit wide set of four f32 types, x86-specific

__m128d

128-bit wide set of two f64 types, x86-specific

__m128i

128-bit wide integer vector type, x86-specific

__m256

256-bit wide set of eight f32 types, x86-specific

__m256d

256-bit wide set of four f64 types, x86-specific

__m256i

256-bit wide integer vector type, x86-specific

Constants

_MM_CMPINT_EQExperimental

Equal

_MM_CMPINT_FALSEExperimental

False

_MM_CMPINT_LEExperimental

Less-than-or-equal

_MM_CMPINT_LTExperimental

Less-than

_MM_CMPINT_NEExperimental

Not-equal

_MM_CMPINT_NLEExperimental

Not less-than-or-equal

_MM_CMPINT_NLTExperimental

Not less-than

_MM_CMPINT_TRUEExperimental

True

_MM_MANT_NORM_1_2Experimental

interval [1, 2)

_MM_MANT_NORM_P5_1Experimental

interval [0.5, 1)

_MM_MANT_NORM_P5_2Experimental

interval [0.5, 2)

_MM_MANT_NORM_P75_1P5Experimental

interval [0.75, 1.5)

_MM_MANT_SIGN_NANExperimental

DEST = NaN if sign(SRC) = 1

_MM_MANT_SIGN_SRCExperimental

sign = sign(SRC)

_MM_MANT_SIGN_ZEROExperimental

sign = 0

_MM_PERM_AAAAExperimental
_MM_PERM_AAABExperimental
_MM_PERM_AAACExperimental
_MM_PERM_AAADExperimental
_MM_PERM_AABAExperimental
_MM_PERM_AABBExperimental
_MM_PERM_AABCExperimental
_MM_PERM_AABDExperimental
_MM_PERM_AACAExperimental
_MM_PERM_AACBExperimental
_MM_PERM_AACCExperimental
_MM_PERM_AACDExperimental
_MM_PERM_AADAExperimental
_MM_PERM_AADBExperimental
_MM_PERM_AADCExperimental
_MM_PERM_AADDExperimental
_MM_PERM_ABAAExperimental
_MM_PERM_ABABExperimental
_MM_PERM_ABACExperimental
_MM_PERM_ABADExperimental
_MM_PERM_ABBAExperimental
_MM_PERM_ABBBExperimental
_MM_PERM_ABBCExperimental
_MM_PERM_ABBDExperimental
_MM_PERM_ABCAExperimental
_MM_PERM_ABCBExperimental
_MM_PERM_ABCCExperimental
_MM_PERM_ABCDExperimental
_MM_PERM_ABDAExperimental
_MM_PERM_ABDBExperimental
_MM_PERM_ABDCExperimental
_MM_PERM_ABDDExperimental
_MM_PERM_ACAAExperimental
_MM_PERM_ACABExperimental
_MM_PERM_ACACExperimental
_MM_PERM_ACADExperimental
_MM_PERM_ACBAExperimental
_MM_PERM_ACBBExperimental
_MM_PERM_ACBCExperimental
_MM_PERM_ACBDExperimental
_MM_PERM_ACCAExperimental
_MM_PERM_ACCBExperimental
_MM_PERM_ACCCExperimental
_MM_PERM_ACCDExperimental
_MM_PERM_ACDAExperimental
_MM_PERM_ACDBExperimental
_MM_PERM_ACDCExperimental
_MM_PERM_ACDDExperimental
_MM_PERM_ADAAExperimental
_MM_PERM_ADABExperimental
_MM_PERM_ADACExperimental
_MM_PERM_ADADExperimental
_MM_PERM_ADBAExperimental
_MM_PERM_ADBBExperimental
_MM_PERM_ADBCExperimental
_MM_PERM_ADBDExperimental
_MM_PERM_ADCAExperimental
_MM_PERM_ADCBExperimental
_MM_PERM_ADCCExperimental
_MM_PERM_ADCDExperimental
_MM_PERM_ADDAExperimental
_MM_PERM_ADDBExperimental
_MM_PERM_ADDCExperimental
_MM_PERM_ADDDExperimental
_MM_PERM_BAAAExperimental
_MM_PERM_BAABExperimental
_MM_PERM_BAACExperimental
_MM_PERM_BAADExperimental
_MM_PERM_BABAExperimental
_MM_PERM_BABBExperimental
_MM_PERM_BABCExperimental
_MM_PERM_BABDExperimental
_MM_PERM_BACAExperimental
_MM_PERM_BACBExperimental
_MM_PERM_BACCExperimental
_MM_PERM_BACDExperimental
_MM_PERM_BADAExperimental
_MM_PERM_BADBExperimental
_MM_PERM_BADCExperimental
_MM_PERM_BADDExperimental
_MM_PERM_BBAAExperimental
_MM_PERM_BBABExperimental
_MM_PERM_BBACExperimental
_MM_PERM_BBADExperimental
_MM_PERM_BBBAExperimental
_MM_PERM_BBBBExperimental
_MM_PERM_BBBCExperimental
_MM_PERM_BBBDExperimental
_MM_PERM_BBCAExperimental
_MM_PERM_BBCBExperimental
_MM_PERM_BBCCExperimental
_MM_PERM_BBCDExperimental
_MM_PERM_BBDAExperimental
_MM_PERM_BBDBExperimental
_MM_PERM_BBDCExperimental
_MM_PERM_BBDDExperimental
_MM_PERM_BCAAExperimental
_MM_PERM_BCABExperimental
_MM_PERM_BCACExperimental
_MM_PERM_BCADExperimental
_MM_PERM_BCBAExperimental
_MM_PERM_BCBBExperimental
_MM_PERM_BCBCExperimental
_MM_PERM_BCBDExperimental
_MM_PERM_BCCAExperimental
_MM_PERM_BCCBExperimental
_MM_PERM_BCCCExperimental
_MM_PERM_BCCDExperimental
_MM_PERM_BCDAExperimental
_MM_PERM_BCDBExperimental
_MM_PERM_BCDCExperimental
_MM_PERM_BCDDExperimental
_MM_PERM_BDAAExperimental
_MM_PERM_BDABExperimental
_MM_PERM_BDACExperimental
_MM_PERM_BDADExperimental
_MM_PERM_BDBAExperimental
_MM_PERM_BDBBExperimental
_MM_PERM_BDBCExperimental
_MM_PERM_BDBDExperimental
_MM_PERM_BDCAExperimental
_MM_PERM_BDCBExperimental
_MM_PERM_BDCCExperimental
_MM_PERM_BDCDExperimental
_MM_PERM_BDDAExperimental
_MM_PERM_BDDBExperimental
_MM_PERM_BDDCExperimental
_MM_PERM_BDDDExperimental
_MM_PERM_CAAAExperimental
_MM_PERM_CAABExperimental
_MM_PERM_CAACExperimental
_MM_PERM_CAADExperimental
_MM_PERM_CABAExperimental
_MM_PERM_CABBExperimental
_MM_PERM_CABCExperimental
_MM_PERM_CABDExperimental
_MM_PERM_CACAExperimental
_MM_PERM_CACBExperimental
_MM_PERM_CACCExperimental
_MM_PERM_CACDExperimental
_MM_PERM_CADAExperimental
_MM_PERM_CADBExperimental
_MM_PERM_CADCExperimental
_MM_PERM_CADDExperimental
_MM_PERM_CBAAExperimental
_MM_PERM_CBABExperimental
_MM_PERM_CBACExperimental
_MM_PERM_CBADExperimental
_MM_PERM_CBBAExperimental
_MM_PERM_CBBBExperimental
_MM_PERM_CBBCExperimental
_MM_PERM_CBBDExperimental
_MM_PERM_CBCAExperimental
_MM_PERM_CBCBExperimental
_MM_PERM_CBCCExperimental
_MM_PERM_CBCDExperimental
_MM_PERM_CBDAExperimental
_MM_PERM_CBDBExperimental
_MM_PERM_CBDCExperimental
_MM_PERM_CBDDExperimental
_MM_PERM_CCAAExperimental
_MM_PERM_CCABExperimental
_MM_PERM_CCACExperimental
_MM_PERM_CCADExperimental
_MM_PERM_CCBAExperimental
_MM_PERM_CCBBExperimental
_MM_PERM_CCBCExperimental
_MM_PERM_CCBDExperimental
_MM_PERM_CCCAExperimental
_MM_PERM_CCCBExperimental
_MM_PERM_CCCCExperimental
_MM_PERM_CCCDExperimental
_MM_PERM_CCDAExperimental
_MM_PERM_CCDBExperimental
_MM_PERM_CCDCExperimental
_MM_PERM_CCDDExperimental
_MM_PERM_CDAAExperimental
_MM_PERM_CDABExperimental
_MM_PERM_CDACExperimental
_MM_PERM_CDADExperimental
_MM_PERM_CDBAExperimental
_MM_PERM_CDBBExperimental
_MM_PERM_CDBCExperimental
_MM_PERM_CDBDExperimental
_MM_PERM_CDCAExperimental
_MM_PERM_CDCBExperimental
_MM_PERM_CDCCExperimental
_MM_PERM_CDCDExperimental
_MM_PERM_CDDAExperimental
_MM_PERM_CDDBExperimental
_MM_PERM_CDDCExperimental
_MM_PERM_CDDDExperimental
_MM_PERM_DAAAExperimental
_MM_PERM_DAABExperimental
_MM_PERM_DAACExperimental
_MM_PERM_DAADExperimental
_MM_PERM_DABAExperimental
_MM_PERM_DABBExperimental
_MM_PERM_DABCExperimental
_MM_PERM_DABDExperimental
_MM_PERM_DACAExperimental
_MM_PERM_DACBExperimental
_MM_PERM_DACCExperimental
_MM_PERM_DACDExperimental
_MM_PERM_DADAExperimental
_MM_PERM_DADBExperimental
_MM_PERM_DADCExperimental
_MM_PERM_DADDExperimental
_MM_PERM_DBAAExperimental
_MM_PERM_DBABExperimental
_MM_PERM_DBACExperimental
_MM_PERM_DBADExperimental
_MM_PERM_DBBAExperimental
_MM_PERM_DBBBExperimental
_MM_PERM_DBBCExperimental
_MM_PERM_DBBDExperimental
_MM_PERM_DBCAExperimental
_MM_PERM_DBCBExperimental
_MM_PERM_DBCCExperimental
_MM_PERM_DBCDExperimental
_MM_PERM_DBDAExperimental
_MM_PERM_DBDBExperimental
_MM_PERM_DBDCExperimental
_MM_PERM_DBDDExperimental
_MM_PERM_DCAAExperimental
_MM_PERM_DCABExperimental
_MM_PERM_DCACExperimental
_MM_PERM_DCADExperimental
_MM_PERM_DCBAExperimental
_MM_PERM_DCBBExperimental
_MM_PERM_DCBCExperimental
_MM_PERM_DCBDExperimental
_MM_PERM_DCCAExperimental
_MM_PERM_DCCBExperimental
_MM_PERM_DCCCExperimental
_MM_PERM_DCCDExperimental
_MM_PERM_DCDAExperimental
_MM_PERM_DCDBExperimental
_MM_PERM_DCDCExperimental
_MM_PERM_DCDDExperimental
_MM_PERM_DDAAExperimental
_MM_PERM_DDABExperimental
_MM_PERM_DDACExperimental
_MM_PERM_DDADExperimental
_MM_PERM_DDBAExperimental
_MM_PERM_DDBBExperimental
_MM_PERM_DDBCExperimental
_MM_PERM_DDBDExperimental
_MM_PERM_DDCAExperimental
_MM_PERM_DDCBExperimental
_MM_PERM_DDCCExperimental
_MM_PERM_DDCDExperimental
_MM_PERM_DDDAExperimental
_MM_PERM_DDDBExperimental
_MM_PERM_DDDCExperimental
_MM_PERM_DDDDExperimental
_XABORT_CAPACITYExperimental

Transaction abort due to the transaction using too much memory.

_XABORT_CONFLICTExperimental

Transaction abort due to a memory conflict with another thread.

_XABORT_DEBUGExperimental

Transaction abort due to a debug trap.

_XABORT_EXPLICITExperimental

Transaction explicitly aborted with xabort. The parameter passed to xabort is available with _xabort_code(status).

_XABORT_NESTEDExperimental

Transaction abort in a inner nested transaction.

_XABORT_RETRYExperimental

Transaction retry is possible.

_XBEGIN_STARTEDExperimental

Transaction successfully started.

_CMP_EQ_OQ

Equal (ordered, non-signaling)

_CMP_EQ_OS

Equal (ordered, signaling)

_CMP_EQ_UQ

Equal (unordered, non-signaling)

_CMP_EQ_US

Equal (unordered, signaling)

_CMP_FALSE_OQ

False (ordered, non-signaling)

_CMP_FALSE_OS

False (ordered, signaling)

_CMP_GE_OQ

Greater-than-or-equal (ordered, non-signaling)

_CMP_GE_OS

Greater-than-or-equal (ordered, signaling)

_CMP_GT_OQ

Greater-than (ordered, non-signaling)

_CMP_GT_OS

Greater-than (ordered, signaling)

_CMP_LE_OQ

Less-than-or-equal (ordered, non-signaling)

_CMP_LE_OS

Less-than-or-equal (ordered, signaling)

_CMP_LT_OQ

Less-than (ordered, non-signaling)

_CMP_LT_OS

Less-than (ordered, signaling)

_CMP_NEQ_OQ

Not-equal (ordered, non-signaling)

_CMP_NEQ_OS

Not-equal (ordered, signaling)

_CMP_NEQ_UQ

Not-equal (unordered, non-signaling)

_CMP_NEQ_US

Not-equal (unordered, signaling)

_CMP_NGE_UQ

Not-greater-than-or-equal (unordered, non-signaling)

_CMP_NGE_US

Not-greater-than-or-equal (unordered, signaling)

_CMP_NGT_UQ

Not-greater-than (unordered, non-signaling)

_CMP_NGT_US

Not-greater-than (unordered, signaling)

_CMP_NLE_UQ

Not-less-than-or-equal (unordered, non-signaling)

_CMP_NLE_US

Not-less-than-or-equal (unordered, signaling)

_CMP_NLT_UQ

Not-less-than (unordered, non-signaling)

_CMP_NLT_US

Not-less-than (unordered, signaling)

_CMP_ORD_Q

Ordered (non-signaling)

_CMP_ORD_S

Ordered (signaling)

_CMP_TRUE_UQ

True (unordered, non-signaling)

_CMP_TRUE_US

True (unordered, signaling)

_CMP_UNORD_Q

Unordered (non-signaling)

_CMP_UNORD_S

Unordered (signaling)

_MM_EXCEPT_DENORM

See _mm_setcsr

_MM_EXCEPT_DIV_ZERO

See _mm_setcsr

_MM_EXCEPT_INEXACT

See _mm_setcsr

_MM_EXCEPT_INVALID

See _mm_setcsr

_MM_EXCEPT_MASK

See _MM_GET_EXCEPTION_STATE

_MM_EXCEPT_OVERFLOW

See _mm_setcsr

_MM_EXCEPT_UNDERFLOW

See _mm_setcsr

_MM_FLUSH_ZERO_MASK

See _MM_GET_FLUSH_ZERO_MODE

_MM_FLUSH_ZERO_OFF

See _mm_setcsr

_MM_FLUSH_ZERO_ON

See _mm_setcsr

_MM_FROUND_CEIL

round up and do not suppress exceptions

_MM_FROUND_CUR_DIRECTION

use MXCSR.RC; see vendor::_MM_SET_ROUNDING_MODE

_MM_FROUND_FLOOR

round down and do not suppress exceptions

_MM_FROUND_NEARBYINT

use MXCSR.RC and suppress exceptions; see vendor::_MM_SET_ROUNDING_MODE

_MM_FROUND_NINT

round to nearest and do not suppress exceptions

_MM_FROUND_NO_EXC

suppress exceptions

_MM_FROUND_RAISE_EXC

do not suppress exceptions

_MM_FROUND_RINT

use MXCSR.RC and do not suppress exceptions; see vendor::_MM_SET_ROUNDING_MODE

_MM_FROUND_TO_NEAREST_INT

round to nearest

_MM_FROUND_TO_NEG_INF

round down

_MM_FROUND_TO_POS_INF

round up

_MM_FROUND_TO_ZERO

truncate

_MM_FROUND_TRUNC

truncate and do not suppress exceptions

_MM_HINT_ET0

See _mm_prefetch.

_MM_HINT_ET1

See _mm_prefetch.

_MM_HINT_NTA

See _mm_prefetch.

_MM_HINT_T0

See _mm_prefetch.

_MM_HINT_T1

See _mm_prefetch.

_MM_HINT_T2

See _mm_prefetch.

_MM_MASK_DENORM

See _mm_setcsr

_MM_MASK_DIV_ZERO

See _mm_setcsr

_MM_MASK_INEXACT

See _mm_setcsr

_MM_MASK_INVALID

See _mm_setcsr

_MM_MASK_MASK

See _MM_GET_EXCEPTION_MASK

_MM_MASK_OVERFLOW

See _mm_setcsr

_MM_MASK_UNDERFLOW

See _mm_setcsr

_MM_ROUND_DOWN

See _mm_setcsr

_MM_ROUND_MASK

See _MM_GET_ROUNDING_MODE

_MM_ROUND_NEAREST

See _mm_setcsr

_MM_ROUND_TOWARD_ZERO

See _mm_setcsr

_MM_ROUND_UP

See _mm_setcsr

_SIDD_BIT_MASK

Mask only: return the bit mask

_SIDD_CMP_EQUAL_ANY

For each character in a, find if it is in b (Default)

_SIDD_CMP_EQUAL_EACH

The strings defined by a and b are equal

_SIDD_CMP_EQUAL_ORDERED

Search for the defined substring in the target

_SIDD_CMP_RANGES

For each character in a, determine if b[0] <= c <= b[1] or b[1] <= c <= b[2]...

_SIDD_LEAST_SIGNIFICANT

Index only: return the least significant bit (Default)

_SIDD_MASKED_NEGATIVE_POLARITY

Negates results only before the end of the string

_SIDD_MASKED_POSITIVE_POLARITY

Do not negate results before the end of the string

_SIDD_MOST_SIGNIFICANT

Index only: return the most significant bit

_SIDD_NEGATIVE_POLARITY

Negates results

_SIDD_POSITIVE_POLARITY

Do not negate results (Default)

_SIDD_SBYTE_OPS

String contains signed 8-bit characters

_SIDD_SWORD_OPS

String contains unsigned 16-bit characters

_SIDD_UBYTE_OPS

String contains unsigned 8-bit characters (Default)

_SIDD_UNIT_MASK

Mask only: return the byte mask

_SIDD_UWORD_OPS

String contains unsigned 16-bit characters

_XCR_XFEATURE_ENABLED_MASK

XFEATURE_ENABLED_MASK for XCR

Functions

_MM_SHUFFLEExperimental

A utility function for creating masks to use with Intel shuffle and permute intrinsics.

_bittestExperimental

Returns the bit in position b of the memory addressed by p.

_bittest64Experimental

Returns the bit in position b of the memory addressed by p.

_bittestandcomplementExperimental

Returns the bit in position b of the memory addressed by p, then inverts that bit.

_bittestandcomplement64Experimental

Returns the bit in position b of the memory addressed by p, then inverts that bit.

_bittestandresetExperimental

Returns the bit in position b of the memory addressed by p, then resets that bit to 0.

_bittestandreset64Experimental

Returns the bit in position b of the memory addressed by p, then resets that bit to 0.

_bittestandsetExperimental

Returns the bit in position b of the memory addressed by p, then sets the bit to 1.

_bittestandset64Experimental

Returns the bit in position b of the memory addressed by p, then sets the bit to 1.

_kadd_mask32Experimentalavx512bw

Add 32-bit masks in a and b, and store the result in k.

_kadd_mask64Experimentalavx512bw

Add 64-bit masks in a and b, and store the result in k.

_kand_mask16Experimentalavx512f

Compute the bitwise AND of 16-bit masks a and b, and store the result in k.

_kand_mask32Experimentalavx512bw

Compute the bitwise AND of 32-bit masks a and b, and store the result in k.

_kand_mask64Experimentalavx512bw

Compute the bitwise AND of 64-bit masks a and b, and store the result in k.

_kandn_mask16Experimentalavx512f

Compute the bitwise NOT of 16-bit masks a and then AND with b, and store the result in k.

_kandn_mask32Experimentalavx512bw

Compute the bitwise NOT of 32-bit masks a and then AND with b, and store the result in k.

_kandn_mask64Experimentalavx512bw

Compute the bitwise NOT of 64-bit masks a and then AND with b, and store the result in k.

_knot_mask16Experimentalavx512f

Compute the bitwise NOT of 16-bit mask a, and store the result in k.

_knot_mask32Experimentalavx512bw

Compute the bitwise NOT of 32-bit mask a, and store the result in k.

_knot_mask64Experimentalavx512bw

Compute the bitwise NOT of 64-bit mask a, and store the result in k.

_kor_mask16Experimentalavx512f

Compute the bitwise OR of 16-bit masks a and b, and store the result in k.

_kor_mask32Experimentalavx512bw

Compute the bitwise OR of 32-bit masks a and b, and store the result in k.

_kor_mask64Experimentalavx512bw

Compute the bitwise OR of 64-bit masks a and b, and store the result in k.

_kxnor_mask16Experimentalavx512f

Compute the bitwise XNOR of 16-bit masks a and b, and store the result in k.

_kxnor_mask32Experimentalavx512bw

Compute the bitwise XNOR of 32-bit masks a and b, and store the result in k.

_kxnor_mask64Experimentalavx512bw

Compute the bitwise XNOR of 64-bit masks a and b, and store the result in k.

_kxor_mask16Experimentalavx512f

Compute the bitwise XOR of 16-bit masks a and b, and store the result in k.

_kxor_mask32Experimentalavx512bw

Compute the bitwise XOR of 32-bit masks a and b, and store the result in k.

_kxor_mask64Experimentalavx512bw

Compute the bitwise XOR of 64-bit masks a and b, and store the result in k.

_load_mask32Experimentalavx512bw

Load 32-bit mask from memory into k.

_load_mask64Experimentalavx512bw

Load 64-bit mask from memory into k.

_mm256_abs_epi64Experimentalavx512f,avx512vl

Compute the absolute value of packed signed 64-bit integers in a, and store the unsigned results in dst.

_mm256_aesdec_epi128Experimentalavx512vaes,avx512vl

Performs one round of an AES decryption flow on each 128-bit word (state) in a using the corresponding 128-bit word (key) in round_key.

_mm256_aesdeclast_epi128Experimentalavx512vaes,avx512vl

Performs the last round of an AES decryption flow on each 128-bit word (state) in a using the corresponding 128-bit word (key) in round_key.

_mm256_aesenc_epi128Experimentalavx512vaes,avx512vl

Performs one round of an AES encryption flow on each 128-bit word (state) in a using the corresponding 128-bit word (key) in round_key.

_mm256_aesenclast_epi128Experimentalavx512vaes,avx512vl

Performs the last round of an AES encryption flow on each 128-bit word (state) in a using the corresponding 128-bit word (key) in round_key.

_mm256_alignr_epi32Experimentalavx512f,avx512vl

Concatenate a and b into a 64-byte immediate result, shift the result right by imm8 32-bit elements, and store the low 32 bytes (8 elements) in dst.

_mm256_alignr_epi64Experimentalavx512f,avx512vl

Concatenate a and b into a 64-byte immediate result, shift the result right by imm8 64-bit elements, and store the low 32 bytes (4 elements) in dst.

_mm256_bitshuffle_epi64_maskExperimentalavx512bitalg,avx512vl

Considers the input b as packed 64-bit integers and c as packed 8-bit integers. Then groups 8 8-bit values from cas indices into the the bits of the corresponding 64-bit integer. It then selects these bits and packs them into the output.

_mm256_broadcast_f32x4Experimentalavx512f,avx512vl

Broadcast the 4 packed single-precision (32-bit) floating-point elements from a to all elements of dst.

_mm256_broadcast_i32x4Experimentalavx512f,avx512vl

Broadcast the 4 packed 32-bit integers from a to all elements of dst.

_mm256_broadcastmb_epi64Experimentalavx512cd,avx512vl

Broadcast the low 8-bits from input mask k to all 64-bit elements of dst.

_mm256_broadcastmw_epi32Experimentalavx512cd,avx512vl

Broadcast the low 16-bits from input mask k to all 32-bit elements of dst.

_mm256_clmulepi64_epi128Experimentalavx512vpclmulqdq,avx512vl

Performs a carry-less multiplication of two 64-bit polynomials over the finite field GF(2^k) - in each of the 2 128-bit lanes.

_mm256_cmp_epi8_maskExperimentalavx512bw,avx512vl

Compare packed signed 8-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.

_mm256_cmp_epi16_maskExperimentalavx512bw,avx512vl

Compare packed signed 16-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.

_mm256_cmp_epi32_maskExperimentalavx512f,avx512vl

Compare packed signed 32-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.

_mm256_cmp_epi64_maskExperimentalavx512f,avx512vl

Compare packed signed 64-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.

_mm256_cmp_epu8_maskExperimentalavx512bw,avx512vl

Compare packed unsigned 8-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.

_mm256_cmp_epu16_maskExperimentalavx512bw,avx512vl

Compare packed unsigned 16-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.

_mm256_cmp_epu32_maskExperimentalavx512f,avx512vl

Compare packed unsigned 32-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.

_mm256_cmp_epu64_maskExperimentalavx512f,avx512vl

Compare packed unsigned 64-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.

_mm256_cmp_pd_maskExperimentalavx512f,avx512vl

Compare packed double-precision (64-bit) floating-point elements in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.

_mm256_cmp_ps_maskExperimentalavx512f,avx512vl

Compare packed single-precision (32-bit) floating-point elements in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.

_mm256_cmpeq_epi8_maskExperimentalavx512bw,avx512vl

Compare packed signed 8-bit integers in a and b for equality, and store the results in mask vector k.

_mm256_cmpeq_epi16_maskExperimentalavx512bw,avx512vl

Compare packed signed 16-bit integers in a and b for equality, and store the results in mask vector k.

_mm256_cmpeq_epi32_maskExperimentalavx512f,avx512vl

Compare packed 32-bit integers in a and b for equality, and store the results in mask vector k.

_mm256_cmpeq_epi64_maskExperimentalavx512f,avx512vl

Compare packed 64-bit integers in a and b for equality, and store the results in mask vector k.

_mm256_cmpeq_epu8_maskExperimentalavx512bw,avx512vl

Compare packed unsigned 8-bit integers in a and b for equality, and store the results in mask vector k.

_mm256_cmpeq_epu16_maskExperimentalavx512bw,avx512vl

Compare packed unsigned 16-bit integers in a and b for equality, and store the results in mask vector k.

_mm256_cmpeq_epu32_maskExperimentalavx512f,avx512vl

Compare packed unsigned 32-bit integers in a and b for equality, and store the results in mask vector k.

_mm256_cmpeq_epu64_maskExperimentalavx512f,avx512vl

Compare packed unsigned 64-bit integers in a and b for equality, and store the results in mask vector k.

_mm256_cmpge_epi8_maskExperimentalavx512bw,avx512vl

Compare packed signed 8-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k.

_mm256_cmpge_epi16_maskExperimentalavx512bw,avx512vl

Compare packed signed 16-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k.

_mm256_cmpge_epi32_maskExperimentalavx512f,avx512vl

Compare packed signed 32-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k.

_mm256_cmpge_epi64_maskExperimentalavx512f,avx512vl

Compare packed signed 64-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k.

_mm256_cmpge_epu8_maskExperimentalavx512bw,avx512vl

Compare packed unsigned 8-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k.

_mm256_cmpge_epu16_maskExperimentalavx512bw,avx512vl

Compare packed unsigned 16-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k.

_mm256_cmpge_epu32_maskExperimentalavx512f,avx512vl

Compare packed unsigned 32-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k.

_mm256_cmpge_epu64_maskExperimentalavx512f,avx512vl

Compare packed unsigned 64-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k.

_mm256_cmpgt_epi8_maskExperimentalavx512bw,avx512vl

Compare packed signed 8-bit integers in a and b for greater-than, and store the results in mask vector k.

_mm256_cmpgt_epi16_maskExperimentalavx512bw,avx512vl

Compare packed signed 16-bit integers in a and b for greater-than, and store the results in mask vector k.

_mm256_cmpgt_epi32_maskExperimentalavx512f,avx512vl

Compare packed signed 32-bit integers in a and b for greater-than, and store the results in mask vector k.

_mm256_cmpgt_epi64_maskExperimentalavx512f,avx512vl

Compare packed signed 64-bit integers in a and b for greater-than, and store the results in mask vector k.

_mm256_cmpgt_epu8_maskExperimentalavx512bw,avx512vl

Compare packed unsigned 8-bit integers in a and b for greater-than, and store the results in mask vector k.

_mm256_cmpgt_epu16_maskExperimentalavx512bw,avx512vl

Compare packed unsigned 16-bit integers in a and b for greater-than, and store the results in mask vector k.

_mm256_cmpgt_epu32_maskExperimentalavx512f,avx512vl

Compare packed unsigned 32-bit integers in a and b for greater-than, and store the results in mask vector k.

_mm256_cmpgt_epu64_maskExperimentalavx512f,avx512vl

Compare packed unsigned 64-bit integers in a and b for greater-than, and store the results in mask vector k.

_mm256_cmple_epi8_maskExperimentalavx512bw,avx512vl

Compare packed signed 8-bit integers in a and b for less-than-or-equal, and store the results in mask vector k.

_mm256_cmple_epi16_maskExperimentalavx512bw,avx512vl

Compare packed signed 16-bit integers in a and b for less-than-or-equal, and store the results in mask vector k.

_mm256_cmple_epi32_maskExperimentalavx512f,avx512vl

Compare packed signed 32-bit integers in a and b for less-than-or-equal, and store the results in mask vector k.

_mm256_cmple_epi64_maskExperimentalavx512f,avx512vl

Compare packed signed 64-bit integers in a and b for less-than-or-equal, and store the results in mask vector k.

_mm256_cmple_epu8_maskExperimentalavx512bw,avx512vl

Compare packed unsigned 8-bit integers in a and b for less-than-or-equal, and store the results in mask vector k.

_mm256_cmple_epu16_maskExperimentalavx512bw,avx512vl

Compare packed unsigned 16-bit integers in a and b for less-than-or-equal, and store the results in mask vector k.

_mm256_cmple_epu32_maskExperimentalavx512f,avx512vl

Compare packed unsigned 32-bit integers in a and b for less-than-or-equal, and store the results in mask vector k.

_mm256_cmple_epu64_maskExperimentalavx512f,avx512vl

Compare packed unsigned 64-bit integers in a and b for less-than-or-equal, and store the results in mask vector k.

_mm256_cmplt_epi8_maskExperimentalavx512bw,avx512vl

Compare packed signed 8-bit integers in a and b for less-than, and store the results in mask vector k.

_mm256_cmplt_epi16_maskExperimentalavx512bw,avx512vl

Compare packed signed 16-bit integers in a and b for less-than, and store the results in mask vector k.

_mm256_cmplt_epi32_maskExperimentalavx512f,avx512vl

Compare packed signed 32-bit integers in a and b for less-than, and store the results in mask vector k.

_mm256_cmplt_epi64_maskExperimentalavx512f,avx512vl

Compare packed signed 64-bit integers in a and b for less-than, and store the results in mask vector k.

_mm256_cmplt_epu8_maskExperimentalavx512bw,avx512vl

Compare packed unsigned 8-bit integers in a and b for less-than, and store the results in mask vector k.

_mm256_cmplt_epu16_maskExperimentalavx512bw,avx512vl

Compare packed unsigned 16-bit integers in a and b for less-than, and store the results in mask vector k.

_mm256_cmplt_epu32_maskExperimentalavx512f,avx512vl

Compare packed unsigned 32-bit integers in a and b for less-than, and store the results in mask vector k.

_mm256_cmplt_epu64_maskExperimentalavx512f,avx512vl

Compare packed unsigned 64-bit integers in a and b for less-than, and store the results in mask vector k.

_mm256_cmpneq_epi8_maskExperimentalavx512bw,avx512vl

Compare packed signed 8-bit integers in a and b for not-equal, and store the results in mask vector k.

_mm256_cmpneq_epi16_maskExperimentalavx512bw,avx512vl

Compare packed signed 16-bit integers in a and b for not-equal, and store the results in mask vector k.

_mm256_cmpneq_epi32_maskExperimentalavx512f,avx512vl

Compare packed 32-bit integers in a and b for not-equal, and store the results in mask vector k.

_mm256_cmpneq_epi64_maskExperimentalavx512f,avx512vl

Compare packed signed 64-bit integers in a and b for not-equal, and store the results in mask vector k.

_mm256_cmpneq_epu8_maskExperimentalavx512bw,avx512vl

Compare packed unsigned 8-bit integers in a and b for not-equal, and store the results in mask vector k.

_mm256_cmpneq_epu16_maskExperimentalavx512bw,avx512vl

Compare packed unsigned 16-bit integers in a and b for not-equal, and store the results in mask vector k.

_mm256_cmpneq_epu32_maskExperimentalavx512f,avx512vl

Compare packed unsigned 32-bit integers in a and b for not-equal, and store the results in mask vector k.

_mm256_cmpneq_epu64_maskExperimentalavx512f,avx512vl

Compare packed unsigned 64-bit integers in a and b for not-equal, and store the results in mask vector k.

_mm256_conflict_epi32Experimentalavx512cd,avx512vl

Test each 32-bit element of a for equality with all other elements in a closer to the least significant bit. Each element’s comparison forms a zero extended bit vector in dst.

_mm256_conflict_epi64Experimentalavx512cd,avx512vl

Test each 64-bit element of a for equality with all other elements in a closer to the least significant bit. Each element’s comparison forms a zero extended bit vector in dst.

_mm256_cvtepi16_epi8Experimentalavx512bw,avx512vl

Convert packed 16-bit integers in a to packed 8-bit integers with truncation, and store the results in dst.

_mm256_cvtepi32_epi8Experimentalavx512f,avx512vl

Convert packed 32-bit integers in a to packed 8-bit integers with truncation, and store the results in dst.

_mm256_cvtepi32_epi16Experimentalavx512f,avx512vl

Convert packed 32-bit integers in a to packed 16-bit integers with truncation, and store the results in dst.

_mm256_cvtepi64_epi8Experimentalavx512f,avx512vl

Convert packed 64-bit integers in a to packed 8-bit integers with truncation, and store the results in dst.

_mm256_cvtepi64_epi16Experimentalavx512f,avx512vl

Convert packed 64-bit integers in a to packed 16-bit integers with truncation, and store the results in dst.

_mm256_cvtepi64_epi32Experimentalavx512f,avx512vl

Convert packed 64-bit integers in a to packed 32-bit integers with truncation, and store the results in dst.

_mm256_cvtepu32_pdExperimentalavx512f,avx512vl

Convert packed unsigned 32-bit integers in a to packed double-precision (64-bit) floating-point elements, and store the results in dst.

_mm256_cvtne2ps_pbhExperimentalavx512bf16,avx512vl

Convert packed single-precision (32-bit) floating-point elements in two 256-bit vectors a and b to packed BF16 (16-bit) floating-point elements, and store the results in a 256-bit wide vector. Intel’s documentation

_mm256_cvtneps_pbhExperimentalavx512bf16,avx512vl

Convert packed single-precision (32-bit) floating-point elements in a to packed BF16 (16-bit) floating-point elements, and store the results in dst. Intel’s documentation

_mm256_cvtpd_epu32Experimentalavx512f,avx512vl

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers, and store the results in dst.

_mm256_cvtph_psExperimentalf16c

Converts the 8 x 16-bit half-precision float values in the 128-bit vector a into 8 x 32-bit float values stored in a 256-bit wide vector.

_mm256_cvtps_epu32Experimentalavx512f,avx512vl

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers, and store the results in dst.

_mm256_cvtps_phExperimentalf16c

Converts the 8 x 32-bit float values in the 256-bit vector a into 8 x 16-bit half-precision float values stored in a 128-bit wide vector.

_mm256_cvtsepi16_epi8Experimentalavx512bw,avx512vl

Convert packed signed 16-bit integers in a to packed 8-bit integers with signed saturation, and store the results in dst.

_mm256_cvtsepi32_epi8Experimentalavx512f,avx512vl

Convert packed signed 32-bit integers in a to packed 8-bit integers with signed saturation, and store the results in dst.

_mm256_cvtsepi32_epi16Experimentalavx512f,avx512vl

Convert packed signed 32-bit integers in a to packed 16-bit integers with signed saturation, and store the results in dst.

_mm256_cvtsepi64_epi8Experimentalavx512f,avx512vl

Convert packed signed 64-bit integers in a to packed 8-bit integers with signed saturation, and store the results in dst.

_mm256_cvtsepi64_epi16Experimentalavx512f,avx512vl

Convert packed signed 64-bit integers in a to packed 16-bit integers with signed saturation, and store the results in dst.

_mm256_cvtsepi64_epi32Experimentalavx512f,avx512vl

Convert packed signed 64-bit integers in a to packed 32-bit integers with signed saturation, and store the results in dst.

_mm256_cvttpd_epu32Experimentalavx512f,avx512vl

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers with truncation, and store the results in dst.

_mm256_cvttps_epu32Experimentalavx512f,avx512vl

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers with truncation, and store the results in dst.

_mm256_cvtusepi16_epi8Experimentalavx512bw,avx512vl

Convert packed unsigned 16-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and store the results in dst.

_mm256_cvtusepi32_epi8Experimentalavx512f,avx512vl

Convert packed unsigned 32-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and store the results in dst.

_mm256_cvtusepi32_epi16Experimentalavx512f,avx512vl

Convert packed unsigned 32-bit integers in a to packed unsigned 16-bit integers with unsigned saturation, and store the results in dst.

_mm256_cvtusepi64_epi8Experimentalavx512f,avx512vl

Convert packed unsigned 64-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and store the results in dst.

_mm256_cvtusepi64_epi16Experimentalavx512f,avx512vl

Convert packed unsigned 64-bit integers in a to packed unsigned 16-bit integers with unsigned saturation, and store the results in dst.

_mm256_cvtusepi64_epi32Experimentalavx512f,avx512vl

Convert packed unsigned 64-bit integers in a to packed unsigned 32-bit integers with unsigned saturation, and store the results in dst.

_mm256_dbsad_epu8Experimentalavx512bw,avx512vl

Compute the sum of absolute differences (SADs) of quadruplets of unsigned 8-bit integers in a compared to those in b, and store the 16-bit results in dst. Four SADs are performed on four 8-bit quadruplets for each 64-bit lane. The first two SADs use the lower 8-bit quadruplet of the lane from a, and the last two SADs use the uppper 8-bit quadruplet of the lane from a. Quadruplets from b are selected from within 128-bit lanes according to the control in imm8, and each SAD in each 64-bit lane uses the selected quadruplet at 8-bit offsets.

_mm256_dpbf16_psExperimentalavx512bf16,avx512vl

Compute dot-product of BF16 (16-bit) floating-point pairs in a and b, accumulating the intermediate single-precision (32-bit) floating-point elements with elements in src, and store the results in dst. Intel’s documentation

_mm256_dpbusd_epi32Experimentalavx512vnni,avx512vl

Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in a with corresponding signed 8-bit integers in b, producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in src, and store the packed 32-bit results in dst.

_mm256_dpbusds_epi32Experimentalavx512vnni,avx512vl

Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in a with corresponding signed 8-bit integers in b, producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in src using signed saturation, and store the packed 32-bit results in dst.

_mm256_dpwssd_epi32Experimentalavx512vnni,avx512vl

Multiply groups of 2 adjacent pairs of signed 16-bit integers in a with corresponding 16-bit integers in b, producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in src, and store the packed 32-bit results in dst.

_mm256_dpwssds_epi32Experimentalavx512vnni,avx512vl

Multiply groups of 2 adjacent pairs of signed 16-bit integers in a with corresponding 16-bit integers in b, producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in src using signed saturation, and store the packed 32-bit results in dst.

_mm256_extractf32x4_psExperimentalavx512f,avx512vl

Extract 128 bits (composed of 4 packed single-precision (32-bit) floating-point elements) from a, selected with imm8, and store the result in dst.

_mm256_extracti32x4_epi32Experimentalavx512f,avx512vl

Extract 128 bits (composed of 4 packed 32-bit integers) from a, selected with IMM1, and store the result in dst.

_mm256_fixupimm_pdExperimentalavx512f,avx512vl

Fix up packed double-precision (64-bit) floating-point elements in a and b using packed 64-bit integers in c, and store the results in dst. imm8 is used to set the required flags reporting.

_mm256_fixupimm_psExperimentalavx512f,avx512vl

Fix up packed single-precision (32-bit) floating-point elements in a and b using packed 32-bit integers in c, and store the results in dst. imm8 is used to set the required flags reporting.

_mm256_getexp_pdExperimentalavx512f,avx512vl

Convert the exponent of each packed double-precision (64-bit) floating-point element in a to a double-precision (64-bit) floating-point number representing the integer exponent, and store the results in dst. This intrinsic essentially calculates floor(log2(x)) for each element.

_mm256_getexp_psExperimentalavx512f,avx512vl

Convert the exponent of each packed single-precision (32-bit) floating-point element in a to a single-precision (32-bit) floating-point number representing the integer exponent, and store the results in dst. This intrinsic essentially calculates floor(log2(x)) for each element.

_mm256_getmant_pdExperimentalavx512f,avx512vl

Normalize the mantissas of packed double-precision (64-bit) floating-point elements in a, and store the results in dst. This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1

_mm256_getmant_psExperimentalavx512f,avx512vl

Normalize the mantissas of packed single-precision (32-bit) floating-point elements in a, and store the results in dst. This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign. The mantissa is normalized to the interval specified by interv, which can take the following values: _MM_MANT_NORM_1_2 // interval [1, 2) _MM_MANT_NORM_p5_2 // interval [0.5, 2) _MM_MANT_NORM_p5_1 // interval [0.5, 1) _MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5) The sign is determined by sc which can take the following values: _MM_MANT_SIGN_src // sign = sign(src) _MM_MANT_SIGN_zero // sign = 0 _MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1

_mm256_gf2p8affine_epi64_epi8Experimentalavx512gfni,avx512bw,avx512vl

Performs an affine transformation on the packed bytes in x. That is computes a*x+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix and b being a constant 8-bit immediate value. Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a.

_mm256_gf2p8affineinv_epi64_epi8Experimentalavx512gfni,avx512bw,avx512vl

Performs an affine transformation on the inverted packed bytes in x. That is computes a*inv(x)+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix and b being a constant 8-bit immediate value. The inverse of a byte is defined with respect to the reduction polynomial x^8+x^4+x^3+x+1. The inverse of 0 is 0. Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a.

_mm256_gf2p8mul_epi8Experimentalavx512gfni,avx512bw,avx512vl

Performs a multiplication in GF(2^8) on the packed bytes. The field is in polynomial representation with the reduction polynomial x^8 + x^4 + x^3 + x + 1.

_mm256_insertf32x4Experimentalavx512f,avx512vl

Copy a to dst, then insert 128 bits (composed of 4 packed single-precision (32-bit) floating-point elements) from b into dst at the location specified by imm8.

_mm256_inserti32x4Experimentalavx512f,avx512vl

Copy a to dst, then insert 128 bits (composed of 4 packed 32-bit integers) from b into dst at the location specified by imm8.

_mm256_load_epi32Experimentalavx512f,avx512vl

Load 256-bits (composed of 8 packed 32-bit integers) from memory into dst. mem_addr must be aligned on a 32-byte boundary or a general-protection exception may be generated.

_mm256_load_epi64Experimentalavx512f,avx512vl

Load 256-bits (composed of 4 packed 64-bit integers) from memory into dst. mem_addr must be aligned on a 32-byte boundary or a general-protection exception may be generated.

_mm256_loadu_epi8Experimentalavx512bw,avx512vl

Load 256-bits (composed of 32 packed 8-bit integers) from memory into dst. mem_addr does not need to be aligned on any particular boundary.

_mm256_loadu_epi16Experimentalavx512bw,avx512vl

Load 256-bits (composed of 16 packed 16-bit integers) from memory into dst. mem_addr does not need to be aligned on any particular boundary.

_mm256_loadu_epi32Experimentalavx512f,avx512vl

Load 256-bits (composed of 8 packed 32-bit integers) from memory into dst. mem_addr does not need to be aligned on any particular boundary.

_mm256_loadu_epi64Experimentalavx512f,avx512vl

Load 256-bits (composed of 4 packed 64-bit integers) from memory into dst. mem_addr does not need to be aligned on any particular boundary.

_mm256_lzcnt_epi32Experimentalavx512cd,avx512vl

Counts the number of leading zero bits in each packed 32-bit integer in a, and store the results in dst.

_mm256_lzcnt_epi64Experimentalavx512cd,avx512vl

Counts the number of leading zero bits in each packed 64-bit integer in a, and store the results in dst.

_mm256_madd52hi_epu64Experimentalavx512ifma,avx512vl

Multiply packed unsigned 52-bit integers in each 64-bit element of b and c to form a 104-bit intermediate result. Add the high 52-bit unsigned integer from the intermediate result with the corresponding unsigned 64-bit integer in a, and store the results in dst.

_mm256_madd52lo_epu64Experimentalavx512ifma,avx512vl

Multiply packed unsigned 52-bit integers in each 64-bit element of b and c to form a 104-bit intermediate result. Add the low 52-bit unsigned integer from the intermediate result with the corresponding unsigned 64-bit integer in a, and store the results in dst.

_mm256_mask2_permutex2var_epi8Experimentalavx512vbmi,avx512vl

Shuffle 8-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm256_mask2_permutex2var_epi16Experimentalavx512bw,avx512vl

Shuffle 16-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from idx when the corresponding mask bit is not set).

_mm256_mask2_permutex2var_epi32Experimentalavx512f,avx512vl

Shuffle 32-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from idx when the corresponding mask bit is not set).

_mm256_mask2_permutex2var_epi64Experimentalavx512f,avx512vl

Shuffle 64-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from idx when the corresponding mask bit is not set).

_mm256_mask2_permutex2var_pdExperimentalavx512f,avx512vl

Shuffle double-precision (64-bit) floating-point elements in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from idx when the corresponding mask bit is not set)

_mm256_mask2_permutex2var_psExperimentalavx512f,avx512vl

Shuffle single-precision (32-bit) floating-point elements in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from idx when the corresponding mask bit is not set).

_mm256_mask3_fmadd_pdExperimentalavx512f,avx512vl

Multiply packed double-precision (64-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm256_mask3_fmadd_psExperimentalavx512f,avx512vl

Multiply packed single-precision (32-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm256_mask3_fmaddsub_pdExperimentalavx512f,avx512vl

Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm256_mask3_fmaddsub_psExperimentalavx512f,avx512vl

Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm256_mask3_fmsub_pdExperimentalavx512f,avx512vl

Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm256_mask3_fmsub_psExperimentalavx512f,avx512vl

Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm256_mask3_fmsubadd_pdExperimentalavx512f,avx512vl

Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively subtract and add packed elements in c from/to the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm256_mask3_fmsubadd_psExperimentalavx512f,avx512vl

Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively subtract and add packed elements in c from/to the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm256_mask3_fnmadd_pdExperimentalavx512f,avx512vl

Multiply packed double-precision (64-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm256_mask3_fnmadd_psExperimentalavx512f,avx512vl

Multiply packed single-precision (32-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm256_mask3_fnmsub_pdExperimentalavx512f,avx512vl

Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm256_mask3_fnmsub_psExperimentalavx512f,avx512vl

Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm256_mask_abs_epi8Experimentalavx512bw,avx512vl

Compute the absolute value of packed signed 8-bit integers in a, and store the unsigned results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_abs_epi16Experimentalavx512bw,avx512vl

Compute the absolute value of packed signed 16-bit integers in a, and store the unsigned results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_abs_epi32Experimentalavx512f,avx512vl

Compute the absolute value of packed signed 32-bit integers in a, and store the unsigned results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_abs_epi64Experimentalavx512f,avx512vl

Compute the absolute value of packed signed 64-bit integers in a, and store the unsigned results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_add_epi8Experimentalavx512bw,avx512vl

Add packed 8-bit integers in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_add_epi16Experimentalavx512bw,avx512vl

Add packed 16-bit integers in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_add_epi32Experimentalavx512f,avx512vl

Add packed 32-bit integers in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_add_epi64Experimentalavx512f,avx512vl

Add packed 64-bit integers in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_add_pdExperimentalavx512f,avx512vl

Add packed double-precision (64-bit) floating-point elements in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_add_psExperimentalavx512f,avx512vl

Add packed single-precision (32-bit) floating-point elements in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_adds_epi8Experimentalavx512bw,avx512vl

Add packed signed 8-bit integers in a and b using saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_adds_epi16Experimentalavx512bw,avx512vl

Add packed signed 16-bit integers in a and b using saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_adds_epu8Experimentalavx512bw,avx512vl

Add packed unsigned 8-bit integers in a and b using saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_adds_epu16Experimentalavx512bw,avx512vl

Add packed unsigned 16-bit integers in a and b using saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_alignr_epi8Experimentalavx512bw,avx512vl

Concatenate pairs of 16-byte blocks in a and b into a 32-byte temporary result, shift the result right by imm8 bytes, and store the low 16 bytes in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_alignr_epi32Experimentalavx512f,avx512vl

Concatenate a and b into a 64-byte immediate result, shift the result right by imm8 32-bit elements, and store the low 32 bytes (8 elements) in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_alignr_epi64Experimentalavx512f,avx512vl

Concatenate a and b into a 64-byte immediate result, shift the result right by imm8 64-bit elements, and store the low 32 bytes (4 elements) in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_and_epi32Experimentalavx512f,avx512vl

Performs element-by-element bitwise AND between packed 32-bit integer elements of a and b, storing the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_and_epi64Experimentalavx512f,avx512vl

Compute the bitwise AND of packed 64-bit integers in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_andnot_epi32Experimentalavx512f,avx512vl

Compute the bitwise NOT of packed 32-bit integers in a and then AND with b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_andnot_epi64Experimentalavx512f,avx512vl

Compute the bitwise NOT of packed 64-bit integers in a and then AND with b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_avg_epu8Experimentalavx512bw,avx512vl

Average packed unsigned 8-bit integers in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_avg_epu16Experimentalavx512bw,avx512vl

Average packed unsigned 16-bit integers in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_bitshuffle_epi64_maskExperimentalavx512bitalg,avx512vl

Considers the input b as packed 64-bit integers and c as packed 8-bit integers. Then groups 8 8-bit values from cas indices into the the bits of the corresponding 64-bit integer. It then selects these bits and packs them into the output.

_mm256_mask_blend_epi8Experimentalavx512bw,avx512vl

Blend packed 8-bit integers from a and b using control mask k, and store the results in dst.

_mm256_mask_blend_epi16Experimentalavx512bw,avx512vl

Blend packed 16-bit integers from a and b using control mask k, and store the results in dst.

_mm256_mask_blend_epi32Experimentalavx512f,avx512vl

Blend packed 32-bit integers from a and b using control mask k, and store the results in dst.

_mm256_mask_blend_epi64Experimentalavx512f,avx512vl

Blend packed 64-bit integers from a and b using control mask k, and store the results in dst.

_mm256_mask_blend_pdExperimentalavx512f,avx512vl

Blend packed double-precision (64-bit) floating-point elements from a and b using control mask k, and store the results in dst.

_mm256_mask_blend_psExperimentalavx512f,avx512vl

Blend packed single-precision (32-bit) floating-point elements from a and b using control mask k, and store the results in dst.

_mm256_mask_broadcast_f32x4Experimentalavx512f,avx512vl

Broadcast the 4 packed single-precision (32-bit) floating-point elements from a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_broadcast_i32x4Experimentalavx512f,avx512vl

Broadcast the 4 packed 32-bit integers from a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_broadcastb_epi8Experimentalavx512bw,avx512vl

Broadcast the low packed 8-bit integer from a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_broadcastd_epi32Experimentalavx512f,avx512vl

Broadcast the low packed 32-bit integer from a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_broadcastq_epi64Experimentalavx512f,avx512vl

Broadcast the low packed 64-bit integer from a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_broadcastsd_pdExperimentalavx512f,avx512vl

Broadcast the low double-precision (64-bit) floating-point element from a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_broadcastss_psExperimentalavx512f,avx512vl

Broadcast the low single-precision (32-bit) floating-point element from a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_broadcastw_epi16Experimentalavx512bw,avx512vl

Broadcast the low packed 16-bit integer from a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cmp_epi8_maskExperimentalavx512bw,avx512vl

Compare packed signed 8-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmp_epi16_maskExperimentalavx512bw,avx512vl

Compare packed signed 16-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmp_epi32_maskExperimentalavx512f,avx512vl

Compare packed signed 32-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmp_epi64_maskExperimentalavx512f,avx512vl

Compare packed signed 64-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmp_epu8_maskExperimentalavx512bw,avx512vl

Compare packed unsigned 8-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmp_epu16_maskExperimentalavx512bw,avx512vl

Compare packed unsigned 16-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmp_epu32_maskExperimentalavx512f,avx512vl

Compare packed unsigned 32-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmp_epu64_maskExperimentalavx512f,avx512vl

Compare packed unsigned 64-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmp_pd_maskExperimentalavx512f,avx512vl

Compare packed double-precision (64-bit) floating-point elements in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmp_ps_maskExperimentalavx512f,avx512vl

Compare packed single-precision (32-bit) floating-point elements in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmpeq_epi8_maskExperimentalavx512bw,avx512vl

Compare packed signed 8-bit integers in a and b for equality, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmpeq_epi16_maskExperimentalavx512bw,avx512vl

Compare packed signed 16-bit integers in a and b for equality, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmpeq_epi32_maskExperimentalavx512f,avx512vl

Compare packed 32-bit integers in a and b for equality, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmpeq_epi64_maskExperimentalavx512f,avx512vl

Compare packed 64-bit integers in a and b for equality, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmpeq_epu8_maskExperimentalavx512bw,avx512vl

Compare packed unsigned 8-bit integers in a and b for equality, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmpeq_epu16_maskExperimentalavx512bw,avx512vl

Compare packed unsigned 16-bit integers in a and b for equality, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmpeq_epu32_maskExperimentalavx512f,avx512vl

Compare packed unsigned 32-bit integers in a and b for equality, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmpeq_epu64_maskExperimentalavx512f,avx512vl

Compare packed unsigned 64-bit integers in a and b for equality, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmpge_epi8_maskExperimentalavx512bw,avx512vl

Compare packed signed 8-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmpge_epi16_maskExperimentalavx512bw,avx512vl

Compare packed signed 16-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmpge_epi32_maskExperimentalavx512f,avx512vl

Compare packed signed 32-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmpge_epi64_maskExperimentalavx512f,avx512vl

Compare packed signed 64-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmpge_epu8_maskExperimentalavx512bw,avx512vl

Compare packed unsigned 8-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmpge_epu16_maskExperimentalavx512bw,avx512vl

Compare packed unsigned 16-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmpge_epu32_maskExperimentalavx512f,avx512vl

Compare packed unsigned 32-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmpge_epu64_maskExperimentalavx512f,avx512vl

Compare packed unsigned 64-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmpgt_epi8_maskExperimentalavx512bw,avx512vl

Compare packed signed 8-bit integers in a and b for greater-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmpgt_epi16_maskExperimentalavx512bw,avx512vl

Compare packed signed 16-bit integers in a and b for greater-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmpgt_epi32_maskExperimentalavx512f,avx512vl

Compare packed signed 32-bit integers in a and b for greater-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmpgt_epi64_maskExperimentalavx512f,avx512vl

Compare packed signed 64-bit integers in a and b for greater-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmpgt_epu8_maskExperimentalavx512bw,avx512vl

Compare packed unsigned 8-bit integers in a and b for greater-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmpgt_epu16_maskExperimentalavx512bw,avx512vl

Compare packed unsigned 16-bit integers in a and b for greater-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmpgt_epu32_maskExperimentalavx512f,avx512vl

Compare packed unsigned 32-bit integers in a and b for greater-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmpgt_epu64_maskExperimentalavx512f,avx512vl

Compare packed unsigned 64-bit integers in a and b for greater-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmple_epi8_maskExperimentalavx512bw,avx512vl

Compare packed signed 8-bit integers in a and b for less-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmple_epi16_maskExperimentalavx512bw,avx512vl

Compare packed signed 16-bit integers in a and b for less-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmple_epi32_maskExperimentalavx512f,avx512vl

Compare packed signed 32-bit integers in a and b for less-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmple_epi64_maskExperimentalavx512f,avx512vl

Compare packed signed 64-bit integers in a and b for less-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmple_epu8_maskExperimentalavx512bw,avx512vl

Compare packed unsigned 8-bit integers in a and b for less-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmple_epu16_maskExperimentalavx512bw,avx512vl

Compare packed unsigned 16-bit integers in a and b for less-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmple_epu32_maskExperimentalavx512f,avx512vl

Compare packed unsigned 32-bit integers in a and b for less-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmple_epu64_maskExperimentalavx512f,avx512vl

Compare packed unsigned 64-bit integers in a and b for less-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmplt_epi8_maskExperimentalavx512bw,avx512vl

Compare packed signed 8-bit integers in a and b for less-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmplt_epi16_maskExperimentalavx512bw,avx512vl

Compare packed signed 16-bit integers in a and b for less-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmplt_epi32_maskExperimentalavx512f,avx512vl

Compare packed signed 32-bit integers in a and b for less-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmplt_epi64_maskExperimentalavx512f,avx512vl

Compare packed signed 64-bit integers in a and b for less-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmplt_epu8_maskExperimentalavx512bw,avx512vl

Compare packed unsigned 8-bit integers in a and b for less-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmplt_epu16_maskExperimentalavx512bw,avx512vl

Compare packed unsigned 16-bit integers in a and b for less-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmplt_epu32_maskExperimentalavx512f,avx512vl

Compare packed unsigned 32-bit integers in a and b for less-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmplt_epu64_maskExperimentalavx512f,avx512vl

Compare packed unsigned 64-bit integers in a and b for less-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmpneq_epi8_maskExperimentalavx512bw,avx512vl

Compare packed signed 8-bit integers in a and b for not-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmpneq_epi16_maskExperimentalavx512bw,avx512vl

Compare packed signed 16-bit integers in a and b for not-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmpneq_epi32_maskExperimentalavx512f,avx512vl

Compare packed 32-bit integers in a and b for not-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmpneq_epi64_maskExperimentalavx512f,avx512vl

Compare packed signed 64-bit integers in a and b for not-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmpneq_epu8_maskExperimentalavx512bw,avx512vl

Compare packed unsigned 8-bit integers in a and b for not-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmpneq_epu16_maskExperimentalavx512bw,avx512vl

Compare packed unsigned 16-bit integers in a and b for not-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmpneq_epu32_maskExperimentalavx512f,avx512vl

Compare packed unsigned 32-bit integers in a and b for not-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmpneq_epu64_maskExperimentalavx512f,avx512vl

Compare packed unsigned 64-bit integers in a and b for not-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_compress_epi8Experimentalavx512vbmi2,avx512vl

Contiguously store the active 8-bit integers in a (those with their respective bit set in writemask k) to dst, and pass through the remaining elements from src.

_mm256_mask_compress_epi16Experimentalavx512vbmi2,avx512vl

Contiguously store the active 16-bit integers in a (those with their respective bit set in writemask k) to dst, and pass through the remaining elements from src.

_mm256_mask_compress_epi32Experimentalavx512f,avx512vl

Contiguously store the active 32-bit integers in a (those with their respective bit set in writemask k) to dst, and pass through the remaining elements from src.

_mm256_mask_compress_epi64Experimentalavx512f,avx512vl

Contiguously store the active 64-bit integers in a (those with their respective bit set in writemask k) to dst, and pass through the remaining elements from src.

_mm256_mask_compress_pdExperimentalavx512f,avx512vl

Contiguously store the active double-precision (64-bit) floating-point elements in a (those with their respective bit set in writemask k) to dst, and pass through the remaining elements from src.

_mm256_mask_compress_psExperimentalavx512f,avx512vl

Contiguously store the active single-precision (32-bit) floating-point elements in a (those with their respective bit set in writemask k) to dst, and pass through the remaining elements from src.

_mm256_mask_conflict_epi32Experimentalavx512cd,avx512vl

Test each 32-bit element of a for equality with all other elements in a closer to the least significant bit using writemask k (elements are copied from src when the corresponding mask bit is not set). Each element’s comparison forms a zero extended bit vector in dst.

_mm256_mask_conflict_epi64Experimentalavx512cd,avx512vl

Test each 64-bit element of a for equality with all other elements in a closer to the least significant bit using writemask k (elements are copied from src when the corresponding mask bit is not set). Each element’s comparison forms a zero extended bit vector in dst.

_mm256_mask_cvt_roundps_phExperimentalavx512f,avx512vl

Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
Rounding is done according to the imm8[2:0] parameter, which can be one of: (_MM_FROUND_TO_NEAREST_INT |_MM_FROUND_NO_EXC) // round to nearest, and suppress exceptions
(_MM_FROUND_TO_NEG_INF |_MM_FROUND_NO_EXC) // round down, and suppress exceptions
(_MM_FROUND_TO_POS_INF |_MM_FROUND_NO_EXC) // round up, and suppress exceptions
(_MM_FROUND_TO_ZERO |_MM_FROUND_NO_EXC) // truncate, and suppress exceptions
_MM_FROUND_CUR_DIRECTION // use MXCSR.RC; see _MM_SET_ROUNDING_MODE

_mm256_mask_cvtepi8_epi16Experimentalavx512bw,avx512vl

Sign extend packed 8-bit integers in a to packed 16-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvtepi8_epi32Experimentalavx512f,avx512vl

Sign extend packed 8-bit integers in a to packed 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvtepi8_epi64Experimentalavx512f,avx512vl

Sign extend packed 8-bit integers in the low 4 bytes of a to packed 64-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvtepi16_epi8Experimentalavx512bw,avx512vl

Convert packed 16-bit integers in a to packed 8-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvtepi16_epi32Experimentalavx512f,avx512vl

Sign extend packed 16-bit integers in a to packed 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvtepi16_epi64Experimentalavx512f,avx512vl

Sign extend packed 16-bit integers in a to packed 64-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvtepi16_storeu_epi8Experimentalavx512bw,avx512vl

Convert packed 16-bit integers in a to packed 8-bit integers with truncation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm256_mask_cvtepi32_epi8Experimentalavx512f,avx512vl

Convert packed 32-bit integers in a to packed 8-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvtepi32_epi16Experimentalavx512f,avx512vl

Convert packed 32-bit integers in a to packed 16-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvtepi32_epi64Experimentalavx512f,avx512vl

Sign extend packed 32-bit integers in a to packed 64-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvtepi32_pdExperimentalavx512f,avx512vl

Convert packed signed 32-bit integers in a to packed double-precision (64-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvtepi32_psExperimentalavx512f,avx512vl

Convert packed signed 32-bit integers in a to packed single-precision (32-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvtepi32_storeu_epi8Experimentalavx512f,avx512vl

Convert packed 32-bit integers in a to packed 8-bit integers with truncation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm256_mask_cvtepi32_storeu_epi16Experimentalavx512f,avx512vl

Convert packed 32-bit integers in a to packed 16-bit integers with truncation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm256_mask_cvtepi64_epi8Experimentalavx512f,avx512vl

Convert packed 64-bit integers in a to packed 8-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvtepi64_epi16Experimentalavx512f,avx512vl

Convert packed 64-bit integers in a to packed 16-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvtepi64_epi32Experimentalavx512f,avx512vl

Convert packed 64-bit integers in a to packed 32-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvtepi64_storeu_epi8Experimentalavx512f,avx512vl

Convert packed 64-bit integers in a to packed 8-bit integers with truncation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm256_mask_cvtepi64_storeu_epi16Experimentalavx512f,avx512vl

Convert packed 64-bit integers in a to packed 16-bit integers with truncation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm256_mask_cvtepi64_storeu_epi32Experimentalavx512f,avx512vl

Convert packed 64-bit integers in a to packed 32-bit integers with truncation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm256_mask_cvtepu8_epi16Experimentalavx512bw,avx512vl

Zero extend packed unsigned 8-bit integers in a to packed 16-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvtepu8_epi32Experimentalavx512f,avx512vl

Zero extend packed unsigned 8-bit integers in the low 8 bytes of a to packed 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvtepu8_epi64Experimentalavx512f,avx512vl

Zero extend packed unsigned 8-bit integers in the low 4 bytes of a to packed 64-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvtepu16_epi32Experimentalavx512f,avx512vl

Zero extend packed unsigned 16-bit integers in a to packed 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvtepu16_epi64Experimentalavx512f,avx512vl

Zero extend packed unsigned 16-bit integers in the low 8 bytes of a to packed 64-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvtepu32_epi64Experimentalavx512f,avx512vl

Zero extend packed unsigned 32-bit integers in a to packed 64-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvtepu32_pdExperimentalavx512f,avx512vl

Convert packed unsigned 32-bit integers in a to packed double-precision (64-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvtne2ps_pbhExperimentalavx512bf16,avx512vl

Convert packed single-precision (32-bit) floating-point elements in two vectors a and b to packed BF16 (16-bit) floating-point elements and and store the results in single vector dst using writemask k (elements are copied from src when the corresponding mask bit is not set). Intel’s documentation

_mm256_mask_cvtneps_pbhExperimentalavx512bf16,avx512vl

Convert packed single-precision (32-bit) floating-point elements in a to packed BF16 (16-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). Intel’s documentation

_mm256_mask_cvtpd_epi32Experimentalavx512f,avx512vl

Convert packed double-precision (64-bit) floating-point elements in a to packed 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvtpd_epu32Experimentalavx512f,avx512vl

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvtpd_psExperimentalavx512f,avx512vl

Convert packed double-precision (64-bit) floating-point elements in a to packed single-precision (32-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvtph_psExperimentalavx512f,avx512vl

Convert packed half-precision (16-bit) floating-point elements in a to packed single-precision (32-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvtps_epi32Experimentalavx512f,avx512vl

Convert packed single-precision (32-bit) floating-point elements in a to packed 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvtps_epu32Experimentalavx512f,avx512vl

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvtps_phExperimentalavx512f,avx512vl

Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
Rounding is done according to the imm8[2:0] parameter, which can be one of:
_MM_FROUND_TO_NEAREST_INT // round to nearest
_MM_FROUND_TO_NEG_INF // round down
_MM_FROUND_TO_POS_INF // round up
_MM_FROUND_TO_ZERO // truncate
_MM_FROUND_CUR_DIRECTION // use MXCSR.RC; see _MM_SET_ROUNDING_MODE

_mm256_mask_cvtsepi16_epi8Experimentalavx512bw,avx512vl

Convert packed signed 16-bit integers in a to packed 8-bit integers with signed saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvtsepi16_storeu_epi8Experimentalavx512bw,avx512vl

Convert packed signed 16-bit integers in a to packed 8-bit integers with signed saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm256_mask_cvtsepi32_epi8Experimentalavx512f,avx512vl

Convert packed signed 32-bit integers in a to packed 8-bit integers with signed saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvtsepi32_epi16Experimentalavx512f,avx512vl

Convert packed signed 32-bit integers in a to packed 16-bit integers with signed saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvtsepi32_storeu_epi8Experimentalavx512f,avx512vl

Convert packed signed 32-bit integers in a to packed 8-bit integers with signed saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm256_mask_cvtsepi32_storeu_epi16Experimentalavx512f,avx512vl

Convert packed signed 32-bit integers in a to packed 16-bit integers with signed saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm256_mask_cvtsepi64_epi8Experimentalavx512f,avx512vl

Convert packed signed 64-bit integers in a to packed 8-bit integers with signed saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvtsepi64_epi16Experimentalavx512f,avx512vl

Convert packed signed 64-bit integers in a to packed 16-bit integers with signed saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvtsepi64_epi32Experimentalavx512f,avx512vl

Convert packed signed 64-bit integers in a to packed 32-bit integers with signed saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvtsepi64_storeu_epi8Experimentalavx512f,avx512vl

Convert packed signed 64-bit integers in a to packed 8-bit integers with signed saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm256_mask_cvtsepi64_storeu_epi16Experimentalavx512f,avx512vl

Convert packed signed 64-bit integers in a to packed 16-bit integers with signed saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm256_mask_cvtsepi64_storeu_epi32Experimentalavx512f,avx512vl

Convert packed signed 64-bit integers in a to packed 32-bit integers with signed saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm256_mask_cvttpd_epi32Experimentalavx512f,avx512vl

Convert packed double-precision (64-bit) floating-point elements in a to packed 32-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvttpd_epu32Experimentalavx512f,avx512vl

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvttps_epi32Experimentalavx512f,avx512vl

Convert packed single-precision (32-bit) floating-point elements in a to packed 32-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvttps_epu32Experimentalavx512f,avx512vl

Convert packed double-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvtusepi16_epi8Experimentalavx512bw,avx512vl

Convert packed unsigned 16-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvtusepi16_storeu_epi8Experimentalavx512bw,avx512vl

Convert packed unsigned 16-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm256_mask_cvtusepi32_epi8Experimentalavx512f,avx512vl

Convert packed unsigned 32-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvtusepi32_epi16Experimentalavx512f,avx512vl

Convert packed unsigned 32-bit integers in a to packed unsigned 16-bit integers with unsigned saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvtusepi32_storeu_epi8Experimentalavx512f,avx512vl

Convert packed unsigned 32-bit integers in a to packed 8-bit integers with unsigned saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm256_mask_cvtusepi32_storeu_epi16Experimentalavx512f,avx512vl

Convert packed unsigned 32-bit integers in a to packed unsigned 16-bit integers with unsigned saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm256_mask_cvtusepi64_epi8Experimentalavx512f,avx512vl

Convert packed unsigned 64-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvtusepi64_epi16Experimentalavx512f,avx512vl

Convert packed unsigned 64-bit integers in a to packed unsigned 16-bit integers with unsigned saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvtusepi64_epi32Experimentalavx512f,avx512vl

Convert packed unsigned 64-bit integers in a to packed unsigned 32-bit integers with unsigned saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_cvtusepi64_storeu_epi8Experimentalavx512f,avx512vl

Convert packed unsigned 64-bit integers in a to packed 8-bit integers with unsigned saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm256_mask_cvtusepi64_storeu_epi16Experimentalavx512f,avx512vl

Convert packed unsigned 64-bit integers in a to packed 16-bit integers with unsigned saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm256_mask_cvtusepi64_storeu_epi32Experimentalavx512f,avx512vl

Convert packed unsigned 64-bit integers in a to packed 32-bit integers with unsigned saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm256_mask_dbsad_epu8Experimentalavx512bw,avx512vl

Compute the sum of absolute differences (SADs) of quadruplets of unsigned 8-bit integers in a compared to those in b, and store the 16-bit results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). Four SADs are performed on four 8-bit quadruplets for each 64-bit lane. The first two SADs use the lower 8-bit quadruplet of the lane from a, and the last two SADs use the uppper 8-bit quadruplet of the lane from a. Quadruplets from b are selected from within 128-bit lanes according to the control in imm8, and each SAD in each 64-bit lane uses the selected quadruplet at 8-bit offsets.

_mm256_mask_div_pdExperimentalavx512f,avx512vl

Divide packed double-precision (64-bit) floating-point elements in a by packed elements in b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_div_psExperimentalavx512f,avx512vl

Divide packed single-precision (32-bit) floating-point elements in a by packed elements in b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_dpbf16_psExperimentalavx512bf16,avx512vl

Compute dot-product of BF16 (16-bit) floating-point pairs in a and b, accumulating the intermediate single-precision (32-bit) floating-point elements with elements in src, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). Intel’s documentation

_mm256_mask_dpbusd_epi32Experimentalavx512vnni,avx512vl

Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in a with corresponding signed 8-bit integers in b, producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in src, and store the packed 32-bit results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_dpbusds_epi32Experimentalavx512vnni,avx512vl

Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in a with corresponding signed 8-bit integers in b, producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in src using signed saturation, and store the packed 32-bit results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_dpwssd_epi32Experimentalavx512vnni,avx512vl

Multiply groups of 2 adjacent pairs of signed 16-bit integers in a with corresponding 16-bit integers in b, producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in src, and store the packed 32-bit results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_dpwssds_epi32Experimentalavx512vnni,avx512vl

Multiply groups of 2 adjacent pairs of signed 16-bit integers in a with corresponding 16-bit integers in b, producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in src using signed saturation, and store the packed 32-bit results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_expand_epi8Experimentalavx512vbmi2,avx512vl

Load contiguous active 8-bit integers from a (those with their respective bit set in mask k), and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_expand_epi16Experimentalavx512vbmi2,avx512vl

Load contiguous active 16-bit integers from a (those with their respective bit set in mask k), and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_expand_epi32Experimentalavx512f,avx512vl

Load contiguous active 32-bit integers from a (those with their respective bit set in mask k), and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_expand_epi64Experimentalavx512f,avx512vl

Load contiguous active 64-bit integers from a (those with their respective bit set in mask k), and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_expand_pdExperimentalavx512f,avx512vl

Load contiguous active double-precision (64-bit) floating-point elements from a (those with their respective bit set in mask k), and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_expand_psExperimentalavx512f,avx512vl

Load contiguous active single-precision (32-bit) floating-point elements from a (those with their respective bit set in mask k), and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_extractf32x4_psExperimentalavx512f,avx512vl

Extract 128 bits (composed of 4 packed single-precision (32-bit) floating-point elements) from a, selected with imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_extracti32x4_epi32Experimentalavx512f,avx512vl

Extract 128 bits (composed of 4 packed 32-bit integers) from a, selected with IMM1, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_fixupimm_pdExperimentalavx512f,avx512vl

Fix up packed double-precision (64-bit) floating-point elements in a and b using packed 64-bit integers in c, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set). imm8 is used to set the required flags reporting.

_mm256_mask_fixupimm_psExperimentalavx512f,avx512vl

Fix up packed single-precision (32-bit) floating-point elements in a and b using packed 32-bit integers in c, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set). imm8 is used to set the required flags reporting.

_mm256_mask_fmadd_pdExperimentalavx512f,avx512vl

Multiply packed double-precision (64-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm256_mask_fmadd_psExperimentalavx512f,avx512vl

Multiply packed single-precision (32-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm256_mask_fmaddsub_pdExperimentalavx512f,avx512vl

Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm256_mask_fmaddsub_psExperimentalavx512f,avx512vl

Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm256_mask_fmsub_pdExperimentalavx512f,avx512vl

Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm256_mask_fmsub_psExperimentalavx512f,avx512vl

Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm256_mask_fmsubadd_pdExperimentalavx512f,avx512vl

Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively subtract and add packed elements in c from/to the intermediate result, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm256_mask_fmsubadd_psExperimentalavx512f,avx512vl

Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively subtract and add packed elements in c from/to the intermediate result, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm256_mask_fnmadd_pdExperimentalavx512f,avx512vl

Multiply packed double-precision (64-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm256_mask_fnmadd_psExperimentalavx512f,avx512vl

Multiply packed single-precision (32-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm256_mask_fnmsub_pdExperimentalavx512f,avx512vl

Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm256_mask_fnmsub_psExperimentalavx512f,avx512vl

Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm256_mask_getexp_pdExperimentalavx512f,avx512vl

Convert the exponent of each packed double-precision (64-bit) floating-point element in a to a double-precision (64-bit) floating-point number representing the integer exponent, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). This intrinsic essentially calculates floor(log2(x)) for each element.

_mm256_mask_getexp_psExperimentalavx512f,avx512vl

Convert the exponent of each packed single-precision (32-bit) floating-point element in a to a single-precision (32-bit) floating-point number representing the integer exponent, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). This intrinsic essentially calculates floor(log2(x)) for each element.

_mm256_mask_getmant_pdExperimentalavx512f,avx512vl

Normalize the mantissas of packed double-precision (64-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1

_mm256_mask_getmant_psExperimentalavx512f,avx512vl

Normalize the mantissas of packed single-precision (32-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1

_mm256_mask_gf2p8affine_epi64_epi8Experimentalavx512gfni,avx512bw,avx512vl

Performs an affine transformation on the packed bytes in x. That is computes a*x+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix and b being a constant 8-bit immediate value. Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a.

_mm256_mask_gf2p8affineinv_epi64_epi8Experimentalavx512gfni,avx512bw,avx512vl

Performs an affine transformation on the inverted packed bytes in x. That is computes a*inv(x)+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix and b being a constant 8-bit immediate value. The inverse of a byte is defined with respect to the reduction polynomial x^8+x^4+x^3+x+1. The inverse of 0 is 0. Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a.

_mm256_mask_gf2p8mul_epi8Experimentalavx512gfni,avx512bw,avx512vl

Performs a multiplication in GF(2^8) on the packed bytes. The field is in polynomial representation with the reduction polynomial x^8 + x^4 + x^3 + x + 1.

_mm256_mask_insertf32x4Experimentalavx512f,avx512vl

Copy a to tmp, then insert 128 bits (composed of 4 packed single-precision (32-bit) floating-point elements) from b into tmp at the location specified by imm8. Store tmp to dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_inserti32x4Experimentalavx512f,avx512vl

Copy a to tmp, then insert 128 bits (composed of 4 packed 32-bit integers) from b into tmp at the location specified by imm8. Store tmp to dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_lzcnt_epi32Experimentalavx512cd,avx512vl

Counts the number of leading zero bits in each packed 32-bit integer in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_lzcnt_epi64Experimentalavx512cd,avx512vl

Counts the number of leading zero bits in each packed 64-bit integer in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_madd_epi16Experimentalavx512bw,avx512vl

Multiply packed signed 16-bit integers in a and b, producing intermediate signed 32-bit integers. Horizontally add adjacent pairs of intermediate 32-bit integers, and pack the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_maddubs_epi16Experimentalavx512bw,avx512vl

Multiply packed unsigned 8-bit integers in a by packed signed 8-bit integers in b, producing intermediate signed 16-bit integers. Horizontally add adjacent pairs of intermediate signed 16-bit integers, and pack the saturated results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_max_epi8Experimentalavx512bw,avx512vl

Compare packed signed 8-bit integers in a and b, and store packed maximum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_max_epi16Experimentalavx512bw,avx512vl

Compare packed signed 16-bit integers in a and b, and store packed maximum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_max_epi32Experimentalavx512f,avx512vl

Compare packed signed 32-bit integers in a and b, and store packed maximum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_max_epi64Experimentalavx512f,avx512vl

Compare packed signed 64-bit integers in a and b, and store packed maximum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_max_epu8Experimentalavx512bw,avx512vl

Compare packed unsigned 8-bit integers in a and b, and store packed maximum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_max_epu16Experimentalavx512bw,avx512vl

Compare packed unsigned 16-bit integers in a and b, and store packed maximum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_max_epu32Experimentalavx512f,avx512vl

Compare packed unsigned 32-bit integers in a and b, and store packed maximum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_max_epu64Experimentalavx512f,avx512vl

Compare packed unsigned 64-bit integers in a and b, and store packed maximum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_max_pdExperimentalavx512f,avx512vl

Compare packed double-precision (64-bit) floating-point elements in a and b, and store packed maximum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_max_psExperimentalavx512f,avx512vl

Compare packed single-precision (32-bit) floating-point elements in a and b, and store packed maximum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_min_epi8Experimentalavx512bw,avx512vl

Compare packed signed 8-bit integers in a and b, and store packed minimum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_min_epi16Experimentalavx512bw,avx512vl

Compare packed signed 16-bit integers in a and b, and store packed minimum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_min_epi32Experimentalavx512f,avx512vl

Compare packed signed 32-bit integers in a and b, and store packed minimum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_min_epi64Experimentalavx512f,avx512vl

Compare packed signed 64-bit integers in a and b, and store packed minimum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_min_epu8Experimentalavx512bw,avx512vl

Compare packed unsigned 8-bit integers in a and b, and store packed minimum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_min_epu16Experimentalavx512bw,avx512vl

Compare packed unsigned 16-bit integers in a and b, and store packed minimum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_min_epu32Experimentalavx512f,avx512vl

Compare packed unsigned 32-bit integers in a and b, and store packed minimum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_min_epu64Experimentalavx512f,avx512vl

Compare packed unsigned 64-bit integers in a and b, and store packed minimum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_min_pdExperimentalavx512f,avx512vl

Compare packed double-precision (64-bit) floating-point elements in a and b, and store packed minimum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_min_psExperimentalavx512f,avx512vl

Compare packed single-precision (32-bit) floating-point elements in a and b, and store packed minimum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_mov_epi8Experimentalavx512bw,avx512vl

Move packed 8-bit integers from a into dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_mov_epi16Experimentalavx512bw,avx512vl

Move packed 16-bit integers from a into dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_mov_epi32Experimentalavx512f,avx512vl

Move packed 32-bit integers from a to dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_mov_epi64Experimentalavx512f,avx512vl

Move packed 64-bit integers from a to dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_mov_pdExperimentalavx512f,avx512vl

Move packed double-precision (64-bit) floating-point elements from a to dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_mov_psExperimentalavx512f,avx512vl

Move packed single-precision (32-bit) floating-point elements from a to dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_movedup_pdExperimentalavx512f,avx512vl

Duplicate even-indexed double-precision (64-bit) floating-point elements from a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_movehdup_psExperimentalavx512f,avx512vl

Duplicate odd-indexed single-precision (32-bit) floating-point elements from a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_moveldup_psExperimentalavx512f,avx512vl

Duplicate even-indexed single-precision (32-bit) floating-point elements from a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_mul_epi32Experimentalavx512f,avx512vl

Multiply the low signed 32-bit integers from each packed 64-bit element in a and b, and store the signed 64-bit results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_mul_epu32Experimentalavx512f,avx512vl

Multiply the low unsigned 32-bit integers from each packed 64-bit element in a and b, and store the unsigned 64-bit results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_mul_pdExperimentalavx512f,avx512vl

Multiply packed double-precision (64-bit) floating-point elements in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_mul_psExperimentalavx512f,avx512vl

Multiply packed single-precision (32-bit) floating-point elements in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_mulhi_epi16Experimentalavx512bw,avx512vl

Multiply the packed signed 16-bit integers in a and b, producing intermediate 32-bit integers, and store the high 16 bits of the intermediate integers in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_mulhi_epu16Experimentalavx512bw,avx512vl

Multiply the packed unsigned 16-bit integers in a and b, producing intermediate 32-bit integers, and store the high 16 bits of the intermediate integers in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_mulhrs_epi16Experimentalavx512bw,avx512vl

Multiply packed signed 16-bit integers in a and b, producing intermediate signed 32-bit integers. Truncate each intermediate integer to the 18 most significant bits, round by adding 1, and store bits [16:1] to dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_mullo_epi16Experimentalavx512bw,avx512vl

Multiply the packed 16-bit integers in a and b, producing intermediate 32-bit integers, and store the low 16 bits of the intermediate integers in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_mullo_epi32Experimentalavx512f,avx512vl

Multiply the packed 32-bit integers in a and b, producing intermediate 64-bit integers, and store the low 32 bits of the intermediate integers in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_multishift_epi64_epi8Experimentalavx512vbmi,avx512vl

For each 64-bit element in b, select 8 unaligned bytes using a byte-granular shift control within the corresponding 64-bit element of a, and store the 8 assembled bytes to the corresponding 64-bit element of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_or_epi32Experimentalavx512f,avx512vl

Compute the bitwise OR of packed 32-bit integers in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_or_epi64Experimentalavx512f,avx512vl

Compute the bitwise OR of packed 64-bit integers in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_packs_epi16Experimentalavx512bw,avx512vl

Convert packed signed 16-bit integers from a and b to packed 8-bit integers using signed saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_packs_epi32Experimentalavx512bw,avx512vl

Convert packed signed 32-bit integers from a and b to packed 16-bit integers using signed saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_packus_epi16Experimentalavx512bw,avx512vl

Convert packed signed 16-bit integers from a and b to packed 8-bit integers using unsigned saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_packus_epi32Experimentalavx512bw,avx512vl

Convert packed signed 32-bit integers from a and b to packed 16-bit integers using unsigned saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_permute_pdExperimentalavx512f,avx512vl

Shuffle double-precision (64-bit) floating-point elements in a within 128-bit lanes using the control in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_permute_psExperimentalavx512f,avx512vl

Shuffle single-precision (32-bit) floating-point elements in a within 128-bit lanes using the control in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_permutevar_pdExperimentalavx512f,avx512vl

Shuffle double-precision (64-bit) floating-point elements in a within 128-bit lanes using the control in b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_permutevar_psExperimentalavx512f,avx512vl

Shuffle single-precision (32-bit) floating-point elements in a within 128-bit lanes using the control in b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_permutex2var_epi8Experimentalavx512vbmi,avx512vl

Shuffle 8-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm256_mask_permutex2var_epi16Experimentalavx512bw,avx512vl

Shuffle 16-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm256_mask_permutex2var_epi32Experimentalavx512f,avx512vl

Shuffle 32-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm256_mask_permutex2var_epi64Experimentalavx512f,avx512vl

Shuffle 64-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm256_mask_permutex2var_pdExperimentalavx512f,avx512vl

Shuffle double-precision (64-bit) floating-point elements in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm256_mask_permutex2var_psExperimentalavx512f,avx512vl

Shuffle single-precision (32-bit) floating-point elements in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm256_mask_permutex_epi64Experimentalavx512f,avx512vl

Shuffle 64-bit integers in a within 256-bit lanes using the control in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_permutex_pdExperimentalavx512f,avx512vl

Shuffle double-precision (64-bit) floating-point elements in a within 256-bit lanes using the control in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_permutexvar_epi8Experimentalavx512vbmi,avx512vl

Shuffle 8-bit integers in a across lanes using the corresponding index in idx, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_permutexvar_epi16Experimentalavx512bw,avx512vl

Shuffle 16-bit integers in a across lanes using the corresponding index in idx, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_permutexvar_epi32Experimentalavx512f,avx512vl

Shuffle 32-bit integers in a across lanes using the corresponding index in idx, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_permutexvar_epi64Experimentalavx512f,avx512vl

Shuffle 64-bit integers in a across lanes using the corresponding index in idx, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_permutexvar_pdExperimentalavx512f,avx512vl

Shuffle double-precision (64-bit) floating-point elements in a across lanes using the corresponding index in idx, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_permutexvar_psExperimentalavx512f,avx512vl

Shuffle single-precision (32-bit) floating-point elements in a across lanes using the corresponding index in idx, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_popcnt_epi8Experimentalavx512bitalg,avx512vl

For each packed 8-bit integer maps the value to the number of logical 1 bits.

_mm256_mask_popcnt_epi16Experimentalavx512bitalg,avx512vl

For each packed 16-bit integer maps the value to the number of logical 1 bits.

_mm256_mask_popcnt_epi32Experimentalavx512vpopcntdq,avx512vl

For each packed 32-bit integer maps the value to the number of logical 1 bits.

_mm256_mask_popcnt_epi64Experimentalavx512vpopcntdq,avx512vl

For each packed 64-bit integer maps the value to the number of logical 1 bits.

_mm256_mask_rcp14_pdExperimentalavx512f,avx512vl

Compute the approximate reciprocal of packed double-precision (64-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14.

_mm256_mask_rcp14_psExperimentalavx512f,avx512vl

Compute the approximate reciprocal of packed single-precision (32-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14.

_mm256_mask_rol_epi32Experimentalavx512f,avx512vl

Rotate the bits in each packed 32-bit integer in a to the left by the number of bits specified in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_rol_epi64Experimentalavx512f,avx512vl

Rotate the bits in each packed 64-bit integer in a to the left by the number of bits specified in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_rolv_epi32Experimentalavx512f,avx512vl

Rotate the bits in each packed 32-bit integer in a to the left by the number of bits specified in the corresponding element of b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_rolv_epi64Experimentalavx512f,avx512vl

Rotate the bits in each packed 64-bit integer in a to the left by the number of bits specified in the corresponding element of b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_ror_epi32Experimentalavx512f,avx512vl

Rotate the bits in each packed 32-bit integer in a to the right by the number of bits specified in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_ror_epi64Experimentalavx512f,avx512vl

Rotate the bits in each packed 64-bit integer in a to the right by the number of bits specified in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_rorv_epi32Experimentalavx512f,avx512vl

Rotate the bits in each packed 32-bit integer in a to the right by the number of bits specified in the corresponding element of b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_rorv_epi64Experimentalavx512f,avx512vl

Rotate the bits in each packed 64-bit integer in a to the right by the number of bits specified in the corresponding element of b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_roundscale_pdExperimentalavx512f,avx512vl

Round packed double-precision (64-bit) floating-point elements in a to the number of fraction bits specified by imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
Rounding is done according to the imm8[2:0] parameter, which can be one of:
_MM_FROUND_TO_NEAREST_INT // round to nearest
_MM_FROUND_TO_NEG_INF // round down
_MM_FROUND_TO_POS_INF // round up
_MM_FROUND_TO_ZERO // truncate
_MM_FROUND_CUR_DIRECTION // use MXCSR.RC; see _MM_SET_ROUNDING_MODE

_mm256_mask_roundscale_psExperimentalavx512f,avx512vl

Round packed single-precision (32-bit) floating-point elements in a to the number of fraction bits specified by imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
Rounding is done according to the imm8[2:0] parameter, which can be one of:
_MM_FROUND_TO_NEAREST_INT // round to nearest
_MM_FROUND_TO_NEG_INF // round down
_MM_FROUND_TO_POS_INF // round up
_MM_FROUND_TO_ZERO // truncate
_MM_FROUND_CUR_DIRECTION // use MXCSR.RC; see _MM_SET_ROUNDING_MODE

_mm256_mask_rsqrt14_pdExperimentalavx512f,avx512vl

Compute the approximate reciprocal square root of packed double-precision (64-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14.

_mm256_mask_rsqrt14_psExperimentalavx512f,avx512vl

Compute the approximate reciprocal square root of packed single-precision (32-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14.

_mm256_mask_scalef_pdExperimentalavx512f,avx512vl

Scale the packed double-precision (64-bit) floating-point elements in a using values from b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_scalef_psExperimentalavx512f,avx512vl

Scale the packed single-precision (32-bit) floating-point elements in a using values from b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_set1_epi8Experimentalavx512bw,avx512vl

Broadcast 8-bit integer a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_set1_epi16Experimentalavx512bw,avx512vl

Broadcast 16-bit integer a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_set1_epi32Experimentalavx512f,avx512vl

Broadcast 32-bit integer a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_set1_epi64Experimentalavx512f,avx512vl

Broadcast 64-bit integer a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_shldi_epi16Experimentalavx512vbmi2,avx512vl

Concatenate packed 16-bit integers in a and b producing an intermediate 32-bit result. Shift the result left by imm8 bits, and store the upper 16-bits in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_shldi_epi32Experimentalavx512vbmi2,avx512vl

Concatenate packed 32-bit integers in a and b producing an intermediate 64-bit result. Shift the result left by imm8 bits, and store the upper 32-bits in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_shldi_epi64Experimentalavx512vbmi2,avx512vl

Concatenate packed 64-bit integers in a and b producing an intermediate 128-bit result. Shift the result left by imm8 bits, and store the upper 64-bits in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_shldv_epi16Experimentalavx512vbmi2,avx512vl

Concatenate packed 16-bit integers in a and b producing an intermediate 32-bit result. Shift the result left by the amount specified in the corresponding element of c, and store the upper 16-bits in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm256_mask_shldv_epi32Experimentalavx512vbmi2,avx512vl

Concatenate packed 32-bit integers in a and b producing an intermediate 64-bit result. Shift the result left by the amount specified in the corresponding element of c, and store the upper 32-bits in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm256_mask_shldv_epi64Experimentalavx512vbmi2,avx512vl

Concatenate packed 64-bit integers in a and b producing an intermediate 128-bit result. Shift the result left by the amount specified in the corresponding element of c, and store the upper 64-bits in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm256_mask_shrdi_epi16Experimentalavx512vbmi2,avx512vl

Concatenate packed 16-bit integers in b and a producing an intermediate 32-bit result. Shift the result right by imm8 bits, and store the lower 16-bits in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_shrdi_epi32Experimentalavx512vbmi2,avx512vl

Concatenate packed 32-bit integers in b and a producing an intermediate 64-bit result. Shift the result right by imm8 bits, and store the lower 32-bits in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_shrdi_epi64Experimentalavx512vbmi2,avx512vl

Concatenate packed 64-bit integers in b and a producing an intermediate 128-bit result. Shift the result right by imm8 bits, and store the lower 64-bits in dst using writemask k (elements are copied from src“ when the corresponding mask bit is not set).

_mm256_mask_shrdv_epi16Experimentalavx512vbmi2,avx512vl

Concatenate packed 16-bit integers in b and a producing an intermediate 32-bit result. Shift the result right by the amount specified in the corresponding element of c, and store the lower 16-bits in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm256_mask_shrdv_epi32Experimentalavx512vbmi2,avx512vl

Concatenate packed 32-bit integers in b and a producing an intermediate 64-bit result. Shift the result right by the amount specified in the corresponding element of c, and store the lower 32-bits in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm256_mask_shrdv_epi64Experimentalavx512vbmi2,avx512vl

Concatenate packed 64-bit integers in b and a producing an intermediate 128-bit result. Shift the result right by the amount specified in the corresponding element of c, and store the lower 64-bits in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm256_mask_shuffle_epi8Experimentalavx512bw,avx512vl

Shuffle 8-bit integers in a within 128-bit lanes using the control in the corresponding 8-bit element of b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_shuffle_epi32Experimentalavx512f,avx512vl

Shuffle 32-bit integers in a within 128-bit lanes using the control in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_shuffle_f32x4Experimentalavx512f,avx512vl

Shuffle 128-bits (composed of 4 single-precision (32-bit) floating-point elements) selected by imm8 from a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_shuffle_f64x2Experimentalavx512f,avx512vl

Shuffle 128-bits (composed of 2 double-precision (64-bit) floating-point elements) selected by imm8 from a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_shuffle_i32x4Experimentalavx512f,avx512vl

Shuffle 128-bits (composed of 4 32-bit integers) selected by imm8 from a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_shuffle_i64x2Experimentalavx512f,avx512vl

Shuffle 128-bits (composed of 2 64-bit integers) selected by imm8 from a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_shuffle_pdExperimentalavx512f,avx512vl

Shuffle double-precision (64-bit) floating-point elements within 128-bit lanes using the control in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_shuffle_psExperimentalavx512f,avx512vl

Shuffle single-precision (32-bit) floating-point elements in a within 128-bit lanes using the control in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_shufflehi_epi16Experimentalavx512bw,avx512vl

Shuffle 16-bit integers in the high 64 bits of 128-bit lanes of a using the control in imm8. Store the results in the high 64 bits of 128-bit lanes of dst, with the low 64 bits of 128-bit lanes being copied from from a to dst, using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_shufflelo_epi16Experimentalavx512bw,avx512vl

Shuffle 16-bit integers in the low 64 bits of 128-bit lanes of a using the control in imm8. Store the results in the low 64 bits of 128-bit lanes of dst, with the high 64 bits of 128-bit lanes being copied from from a to dst, using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_sll_epi16Experimentalavx512bw,avx512vl

Shift packed 16-bit integers in a left by count while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_sll_epi32Experimentalavx512f,avx512vl

Shift packed 32-bit integers in a left by count while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_sll_epi64Experimentalavx512f,avx512vl

Shift packed 64-bit integers in a left by count while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_slli_epi16Experimentalavx512bw,avx512vl

Shift packed 16-bit integers in a left by imm8 while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_slli_epi32Experimentalavx512f,avx512vl

Shift packed 32-bit integers in a left by imm8 while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_slli_epi64Experimentalavx512f,avx512vl

Shift packed 64-bit integers in a left by imm8 while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_sllv_epi16Experimentalavx512bw,avx512vl

Shift packed 16-bit integers in a left by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_sllv_epi32Experimentalavx512f,avx512vl

Shift packed 32-bit integers in a left by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_sllv_epi64Experimentalavx512f,avx512vl

Shift packed 64-bit integers in a left by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_sqrt_pdExperimentalavx512f,avx512vl

Compute the square root of packed double-precision (64-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_sqrt_psExperimentalavx512f,avx512vl

Compute the square root of packed single-precision (32-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_sra_epi16Experimentalavx512bw,avx512vl

Shift packed 16-bit integers in a right by count while shifting in sign bits, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_sra_epi32Experimentalavx512f,avx512vl

Shift packed 32-bit integers in a right by count while shifting in sign bits, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_sra_epi64Experimentalavx512f,avx512vl

Shift packed 64-bit integers in a right by count while shifting in sign bits, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_srai_epi16Experimentalavx512bw,avx512vl

Shift packed 16-bit integers in a right by imm8 while shifting in sign bits, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_srai_epi32Experimentalavx512f,avx512vl

Shift packed 32-bit integers in a right by imm8 while shifting in sign bits, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_srai_epi64Experimentalavx512f,avx512vl

Shift packed 64-bit integers in a right by imm8 while shifting in sign bits, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_srav_epi16Experimentalavx512bw,avx512vl

Shift packed 16-bit integers in a right by the amount specified by the corresponding element in count while shifting in sign bits, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_srav_epi32Experimentalavx512f,avx512vl

Shift packed 32-bit integers in a right by the amount specified by the corresponding element in count while shifting in sign bits, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_srav_epi64Experimentalavx512f,avx512vl

Shift packed 64-bit integers in a right by the amount specified by the corresponding element in count while shifting in sign bits, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_srl_epi16Experimentalavx512bw,avx512vl

Shift packed 16-bit integers in a right by count while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_srl_epi32Experimentalavx512f,avx512vl

Shift packed 32-bit integers in a right by count while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_srl_epi64Experimentalavx512f,avx512vl

Shift packed 64-bit integers in a right by count while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_srli_epi16Experimentalavx512bw,avx512vl

Shift packed 16-bit integers in a right by imm8 while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_srli_epi32Experimentalavx512f,avx512vl

Shift packed 32-bit integers in a right by imm8 while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_srli_epi64Experimentalavx512f,avx512vl

Shift packed 64-bit integers in a right by imm8 while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_srlv_epi16Experimentalavx512bw,avx512vl

Shift packed 16-bit integers in a right by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_srlv_epi32Experimentalavx512f,avx512vl

Shift packed 32-bit integers in a right by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_srlv_epi64Experimentalavx512f,avx512vl

Shift packed 64-bit integers in a right by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_sub_epi8Experimentalavx512bw,avx512vl

Subtract packed 8-bit integers in b from packed 8-bit integers in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_sub_epi16Experimentalavx512bw,avx512vl

Subtract packed 16-bit integers in b from packed 16-bit integers in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_sub_epi32Experimentalavx512f,avx512vl

Subtract packed 32-bit integers in b from packed 32-bit integers in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_sub_epi64Experimentalavx512f,avx512vl

Subtract packed 64-bit integers in b from packed 64-bit integers in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_sub_pdExperimentalavx512f,avx512vl

Subtract packed double-precision (64-bit) floating-point elements in b from packed double-precision (64-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_sub_psExperimentalavx512f,avx512vl

Subtract packed single-precision (32-bit) floating-point elements in b from packed single-precision (32-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_subs_epi8Experimentalavx512bw,avx512vl

Subtract packed signed 8-bit integers in b from packed 8-bit integers in a using saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_subs_epi16Experimentalavx512bw,avx512vl

Subtract packed signed 16-bit integers in b from packed 16-bit integers in a using saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_subs_epu8Experimentalavx512bw,avx512vl

Subtract packed unsigned 8-bit integers in b from packed unsigned 8-bit integers in a using saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_subs_epu16Experimentalavx512bw,avx512vl

Subtract packed unsigned 16-bit integers in b from packed unsigned 16-bit integers in a using saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_ternarylogic_epi32Experimentalavx512f,avx512vl

Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in imm8. For each bit in each packed 32-bit integer, the corresponding bit from src, a, and b are used to form a 3 bit index into imm8, and the value at that bit in imm8 is written to the corresponding bit in dst using writemask k at 32-bit granularity (32-bit elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_ternarylogic_epi64Experimentalavx512f,avx512vl

Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in imm8. For each bit in each packed 64-bit integer, the corresponding bit from src, a, and b are used to form a 3 bit index into imm8, and the value at that bit in imm8 is written to the corresponding bit in dst using writemask k at 64-bit granularity (64-bit elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_test_epi8_maskExperimentalavx512bw,avx512vl

Compute the bitwise AND of packed 8-bit integers in a and b, producing intermediate 8-bit values, and set the corresponding bit in result mask k (subject to writemask k) if the intermediate value is non-zero.

_mm256_mask_test_epi16_maskExperimentalavx512bw,avx512vl

Compute the bitwise AND of packed 16-bit integers in a and b, producing intermediate 16-bit values, and set the corresponding bit in result mask k (subject to writemask k) if the intermediate value is non-zero.

_mm256_mask_test_epi32_maskExperimentalavx512f,avx512vl

Compute the bitwise AND of packed 32-bit integers in a and b, producing intermediate 32-bit values, and set the corresponding bit in result mask k (subject to writemask k) if the intermediate value is non-zero.

_mm256_mask_test_epi64_maskExperimentalavx512f,avx512vl

Compute the bitwise AND of packed 64-bit integers in a and b, producing intermediate 64-bit values, and set the corresponding bit in result mask k (subject to writemask k) if the intermediate value is non-zero.

_mm256_mask_testn_epi8_maskExperimentalavx512bw,avx512vl

Compute the bitwise NAND of packed 8-bit integers in a and b, producing intermediate 8-bit values, and set the corresponding bit in result mask k (subject to writemask k) if the intermediate value is zero.

_mm256_mask_testn_epi16_maskExperimentalavx512bw,avx512vl

Compute the bitwise NAND of packed 16-bit integers in a and b, producing intermediate 16-bit values, and set the corresponding bit in result mask k (subject to writemask k) if the intermediate value is zero.

_mm256_mask_testn_epi32_maskExperimentalavx512f,avx512vl

Compute the bitwise NAND of packed 32-bit integers in a and b, producing intermediate 32-bit values, and set the corresponding bit in result mask k (subject to writemask k) if the intermediate value is zero.

_mm256_mask_testn_epi64_maskExperimentalavx512f,avx512vl

Compute the bitwise NAND of packed 64-bit integers in a and b, producing intermediate 64-bit values, and set the corresponding bit in result mask k (subject to writemask k) if the intermediate value is zero.

_mm256_mask_unpackhi_epi8Experimentalavx512bw,avx512vl

Unpack and interleave 8-bit integers from the high half of each 128-bit lane in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_unpackhi_epi16Experimentalavx512bw,avx512vl

Unpack and interleave 16-bit integers from the high half of each 128-bit lane in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_unpackhi_epi32Experimentalavx512f,avx512vl

Unpack and interleave 32-bit integers from the high half of each 128-bit lane in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_unpackhi_epi64Experimentalavx512f,avx512vl

Unpack and interleave 64-bit integers from the high half of each 128-bit lane in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_unpackhi_pdExperimentalavx512f,avx512vl

Unpack and interleave double-precision (64-bit) floating-point elements from the high half of each 128-bit lane in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_unpackhi_psExperimentalavx512f,avx512vl

Unpack and interleave single-precision (32-bit) floating-point elements from the high half of each 128-bit lane in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_unpacklo_epi8Experimentalavx512bw,avx512vl

Unpack and interleave 8-bit integers from the low half of each 128-bit lane in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_unpacklo_epi16Experimentalavx512bw,avx512vl

Unpack and interleave 16-bit integers from the low half of each 128-bit lane in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_unpacklo_epi32Experimentalavx512f,avx512vl

Unpack and interleave 32-bit integers from the low half of each 128-bit lane in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_unpacklo_epi64Experimentalavx512f,avx512vl

Unpack and interleave 64-bit integers from the low half of each 128-bit lane in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_unpacklo_pdExperimentalavx512f,avx512vl

Unpack and interleave double-precision (64-bit) floating-point elements from the low half of each 128-bit lane in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_unpacklo_psExperimentalavx512f,avx512vl

Unpack and interleave single-precision (32-bit) floating-point elements from the low half of each 128-bit lane in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_xor_epi32Experimentalavx512f,avx512vl

Compute the bitwise XOR of packed 32-bit integers in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_xor_epi64Experimentalavx512f,avx512vl

Compute the bitwise XOR of packed 64-bit integers in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_abs_epi8Experimentalavx512bw,avx512vl

Compute the absolute value of packed signed 8-bit integers in a, and store the unsigned results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_abs_epi16Experimentalavx512bw,avx512vl

Compute the absolute value of packed signed 16-bit integers in a, and store the unsigned results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_abs_epi32Experimentalavx512f,avx512vl

Compute the absolute value of packed signed 32-bit integers in a, and store the unsigned results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_abs_epi64Experimentalavx512f,avx512vl

Compute the absolute value of packed signed 64-bit integers in a, and store the unsigned results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_add_epi8Experimentalavx512bw,avx512vl

Add packed 8-bit integers in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_add_epi16Experimentalavx512bw,avx512vl

Add packed 16-bit integers in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_add_epi32Experimentalavx512f,avx512vl

Add packed 32-bit integers in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_add_epi64Experimentalavx512f,avx512vl

Add packed 64-bit integers in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_add_pdExperimentalavx512f,avx512vl

Add packed double-precision (64-bit) floating-point elements in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_add_psExperimentalavx512f,avx512vl

Add packed single-precision (32-bit) floating-point elements in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_adds_epi8Experimentalavx512bw,avx512vl

Add packed signed 8-bit integers in a and b using saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_adds_epi16Experimentalavx512bw,avx512vl

Add packed signed 16-bit integers in a and b using saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_adds_epu8Experimentalavx512bw,avx512vl

Add packed unsigned 8-bit integers in a and b using saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_adds_epu16Experimentalavx512bw,avx512vl

Add packed unsigned 16-bit integers in a and b using saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_alignr_epi8Experimentalavx512bw,avx512vl

Concatenate pairs of 16-byte blocks in a and b into a 32-byte temporary result, shift the result right by imm8 bytes, and store the low 16 bytes in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_alignr_epi32Experimentalavx512f,avx512vl

Concatenate a and b into a 64-byte immediate result, shift the result right by imm8 32-bit elements, and store the low 32 bytes (8 elements) in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_alignr_epi64Experimentalavx512f,avx512vl

Concatenate a and b into a 64-byte immediate result, shift the result right by imm8 64-bit elements, and store the low 32 bytes (4 elements) in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_and_epi32Experimentalavx512f,avx512vl

Compute the bitwise AND of packed 32-bit integers in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_and_epi64Experimentalavx512f,avx512vl

Compute the bitwise AND of packed 64-bit integers in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_andnot_epi32Experimentalavx512f,avx512vl

Compute the bitwise NOT of packed 32-bit integers in a and then AND with b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_andnot_epi64Experimentalavx512f,avx512vl

Compute the bitwise NOT of packed 64-bit integers in a and then AND with b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_avg_epu8Experimentalavx512bw,avx512vl

Average packed unsigned 8-bit integers in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_avg_epu16Experimentalavx512bw,avx512vl

Average packed unsigned 16-bit integers in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_broadcast_f32x4Experimentalavx512f,avx512vl

Broadcast the 4 packed single-precision (32-bit) floating-point elements from a to all elements of dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_broadcast_i32x4Experimentalavx512f,avx512vl

Broadcast the 4 packed 32-bit integers from a to all elements of dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_broadcastb_epi8Experimentalavx512bw,avx512vl

Broadcast the low packed 8-bit integer from a to all elements of dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_broadcastd_epi32Experimentalavx512f,avx512vl

Broadcast the low packed 32-bit integer from a to all elements of dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_broadcastq_epi64Experimentalavx512f,avx512vl

Broadcast the low packed 64-bit integer from a to all elements of dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_broadcastsd_pdExperimentalavx512f,avx512vl

Broadcast the low double-precision (64-bit) floating-point element from a to all elements of dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_broadcastss_psExperimentalavx512f,avx512vl

Broadcast the low single-precision (32-bit) floating-point element from a to all elements of dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_broadcastw_epi16Experimentalavx512bw,avx512vl

Broadcast the low packed 16-bit integer from a to all elements of dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_compress_epi8Experimentalavx512vbmi2,avx512vl

Contiguously store the active 8-bit integers in a (those with their respective bit set in zeromask k) to dst, and set the remaining elements to zero.

_mm256_maskz_compress_epi16Experimentalavx512vbmi2,avx512vl

Contiguously store the active 16-bit integers in a (those with their respective bit set in zeromask k) to dst, and set the remaining elements to zero.

_mm256_maskz_compress_epi32Experimentalavx512f,avx512vl

Contiguously store the active 32-bit integers in a (those with their respective bit set in zeromask k) to dst, and set the remaining elements to zero.

_mm256_maskz_compress_epi64Experimentalavx512f,avx512vl

Contiguously store the active 64-bit integers in a (those with their respective bit set in zeromask k) to dst, and set the remaining elements to zero.

_mm256_maskz_compress_pdExperimentalavx512f,avx512vl

Contiguously store the active double-precision (64-bit) floating-point elements in a (those with their respective bit set in zeromask k) to dst, and set the remaining elements to zero.

_mm256_maskz_compress_psExperimentalavx512f,avx512vl

Contiguously store the active single-precision (32-bit) floating-point elements in a (those with their respective bit set in zeromask k) to dst, and set the remaining elements to zero.

_mm256_maskz_conflict_epi32Experimentalavx512cd,avx512vl

Test each 32-bit element of a for equality with all other elements in a closer to the least significant bit using zeromask k (elements are zeroed out when the corresponding mask bit is not set). Each element’s comparison forms a zero extended bit vector in dst.

_mm256_maskz_conflict_epi64Experimentalavx512cd,avx512vl

Test each 64-bit element of a for equality with all other elements in a closer to the least significant bit using zeromask k (elements are zeroed out when the corresponding mask bit is not set). Each element’s comparison forms a zero extended bit vector in dst.

_mm256_maskz_cvt_roundps_phExperimentalavx512f,avx512vl

Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit) floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
Rounding is done according to the imm8[2:0] parameter, which can be one of:
(_MM_FROUND_TO_NEAREST_INT |_MM_FROUND_NO_EXC) // round to nearest, and suppress exceptions
(_MM_FROUND_TO_NEG_INF |_MM_FROUND_NO_EXC) // round down, and suppress exceptions
(_MM_FROUND_TO_POS_INF |_MM_FROUND_NO_EXC) // round up, and suppress exceptions
(_MM_FROUND_TO_ZERO |_MM_FROUND_NO_EXC) // truncate, and suppress exceptions
_MM_FROUND_CUR_DIRECTION // use MXCSR.RC; see _MM_SET_ROUNDING_MODE

_mm256_maskz_cvtepi8_epi16Experimentalavx512bw,avx512vl

Sign extend packed 8-bit integers in a to packed 16-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvtepi8_epi32Experimentalavx512f,avx512vl

Sign extend packed 8-bit integers in a to packed 32-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvtepi8_epi64Experimentalavx512f,avx512vl

Sign extend packed 8-bit integers in the low 4 bytes of a to packed 64-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvtepi16_epi8Experimentalavx512bw,avx512vl

Convert packed 16-bit integers in a to packed 8-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvtepi16_epi32Experimentalavx512f,avx512vl

Sign extend packed 16-bit integers in a to packed 32-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvtepi16_epi64Experimentalavx512f,avx512vl

Sign extend packed 16-bit integers in a to packed 64-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvtepi32_epi8Experimentalavx512f,avx512vl

Convert packed 32-bit integers in a to packed 8-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvtepi32_epi16Experimentalavx512f,avx512vl

Convert packed 32-bit integers in a to packed 16-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvtepi32_epi64Experimentalavx512f,avx512vl

Sign extend packed 32-bit integers in a to packed 64-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvtepi32_pdExperimentalavx512f,avx512vl

Convert packed signed 32-bit integers in a to packed double-precision (64-bit) floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvtepi32_psExperimentalavx512f,avx512vl

Convert packed signed 32-bit integers in a to packed single-precision (32-bit) floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvtepi64_epi8Experimentalavx512f,avx512vl

Convert packed 64-bit integers in a to packed 8-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvtepi64_epi16Experimentalavx512f,avx512vl

Convert packed 64-bit integers in a to packed 16-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvtepi64_epi32Experimentalavx512f,avx512vl

Convert packed 64-bit integers in a to packed 32-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvtepu8_epi16Experimentalavx512bw,avx512vl

Zero extend packed unsigned 8-bit integers in a to packed 16-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvtepu8_epi32Experimentalavx512f,avx512vl

Zero extend packed unsigned 8-bit integers in the low 8 bytes of a to packed 32-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvtepu8_epi64Experimentalavx512f,avx512vl

Zero extend packed unsigned 8-bit integers in the low 4 bytes of a to packed 64-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvtepu16_epi32Experimentalavx512f,avx512vl

Zero extend packed unsigned 16-bit integers in a to packed 32-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvtepu16_epi64Experimentalavx512f,avx512vl

Zero extend packed unsigned 16-bit integers in the low 8 bytes of a to packed 64-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvtepu32_epi64Experimentalavx512f,avx512vl

Zero extend packed unsigned 32-bit integers in a to packed 64-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvtepu32_pdExperimentalavx512f,avx512vl

Convert packed unsigned 32-bit integers in a to packed double-precision (64-bit) floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvtne2ps_pbhExperimentalavx512bf16,avx512vl

Convert packed single-precision (32-bit) floating-point elements in two vectors a and b to packed BF16 (16-bit) floating-point elements, and store the results in single vector dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). Intel’s documentation

_mm256_maskz_cvtneps_pbhExperimentalavx512bf16,avx512vl

Convert packed single-precision (32-bit) floating-point elements in a to packed BF16 (16-bit) floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). Intel’s documentation

_mm256_maskz_cvtpd_epi32Experimentalavx512f,avx512vl

Convert packed double-precision (64-bit) floating-point elements in a to packed 32-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvtpd_epu32Experimentalavx512f,avx512vl

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvtpd_psExperimentalavx512f,avx512vl

Convert packed double-precision (64-bit) floating-point elements in a to packed single-precision (32-bit) floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvtph_psExperimentalavx512f,avx512vl

Convert packed half-precision (16-bit) floating-point elements in a to packed single-precision (32-bit) floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvtps_epi32Experimentalavx512f,avx512vl

Convert packed single-precision (32-bit) floating-point elements in a to packed 32-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvtps_epu32Experimentalavx512f,avx512vl

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvtps_phExperimentalavx512f,avx512vl

Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit) floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
Rounding is done according to the imm8[2:0] parameter, which can be one of:
_MM_FROUND_TO_NEAREST_INT // round to nearest
_MM_FROUND_TO_NEG_INF // round down
_MM_FROUND_TO_POS_INF // round up
_MM_FROUND_TO_ZERO // truncate
_MM_FROUND_CUR_DIRECTION // use MXCSR.RC; see _MM_SET_ROUNDING_MODE

_mm256_maskz_cvtsepi16_epi8Experimentalavx512bw,avx512vl

Convert packed signed 16-bit integers in a to packed 8-bit integers with signed saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvtsepi32_epi8Experimentalavx512f,avx512vl

Convert packed signed 32-bit integers in a to packed 8-bit integers with signed saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvtsepi32_epi16Experimentalavx512f,avx512vl

Convert packed signed 32-bit integers in a to packed 16-bit integers with signed saturation, and store the results in dst.

_mm256_maskz_cvtsepi64_epi8Experimentalavx512f,avx512vl

Convert packed signed 64-bit integers in a to packed 8-bit integers with signed saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvtsepi64_epi16Experimentalavx512f,avx512vl

Convert packed signed 64-bit integers in a to packed 16-bit integers with signed saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvtsepi64_epi32Experimentalavx512f,avx512vl

Convert packed signed 64-bit integers in a to packed 32-bit integers with signed saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvttpd_epi32Experimentalavx512f,avx512vl

Convert packed double-precision (64-bit) floating-point elements in a to packed 32-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvttpd_epu32Experimentalavx512f,avx512vl

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvttps_epi32Experimentalavx512f,avx512vl

Convert packed single-precision (32-bit) floating-point elements in a to packed 32-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvttps_epu32Experimentalavx512f,avx512vl

Convert packed double-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvtusepi16_epi8Experimentalavx512bw,avx512vl

Convert packed unsigned 16-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvtusepi32_epi8Experimentalavx512f,avx512vl

Convert packed unsigned 32-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvtusepi32_epi16Experimentalavx512f,avx512vl

Convert packed unsigned 32-bit integers in a to packed unsigned 16-bit integers with unsigned saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvtusepi64_epi8Experimentalavx512f,avx512vl

Convert packed unsigned 64-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvtusepi64_epi16Experimentalavx512f,avx512vl

Convert packed unsigned 64-bit integers in a to packed unsigned 16-bit integers with unsigned saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_cvtusepi64_epi32Experimentalavx512f,avx512vl

Convert packed unsigned 64-bit integers in a to packed unsigned 32-bit integers with unsigned saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_dbsad_epu8Experimentalavx512bw,avx512vl

Compute the sum of absolute differences (SADs) of quadruplets of unsigned 8-bit integers in a compared to those in b, and store the 16-bit results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). Four SADs are performed on four 8-bit quadruplets for each 64-bit lane. The first two SADs use the lower 8-bit quadruplet of the lane from a, and the last two SADs use the uppper 8-bit quadruplet of the lane from a. Quadruplets from b are selected from within 128-bit lanes according to the control in imm8, and each SAD in each 64-bit lane uses the selected quadruplet at 8-bit offsets.

_mm256_maskz_div_pdExperimentalavx512f,avx512vl

Divide packed double-precision (64-bit) floating-point elements in a by packed elements in b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_div_psExperimentalavx512f,avx512vl

Divide packed single-precision (32-bit) floating-point elements in a by packed elements in b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_dpbf16_psExperimentalavx512bf16,avx512vl

Compute dot-product of BF16 (16-bit) floating-point pairs in a and b, accumulating the intermediate single-precision (32-bit) floating-point elements with elements in src, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). Intel’s documentation

_mm256_maskz_dpbusd_epi32Experimentalavx512vnni,avx512vl

Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in a with corresponding signed 8-bit integers in b, producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in src, and store the packed 32-bit results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_dpbusds_epi32Experimentalavx512vnni,avx512vl

Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in a with corresponding signed 8-bit integers in b, producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in src using signed saturation, and store the packed 32-bit results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_dpwssd_epi32Experimentalavx512vnni,avx512vl

Multiply groups of 2 adjacent pairs of signed 16-bit integers in a with corresponding 16-bit integers in b, producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in src, and store the packed 32-bit results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_dpwssds_epi32Experimentalavx512vnni,avx512vl

Multiply groups of 2 adjacent pairs of signed 16-bit integers in a with corresponding 16-bit integers in b, producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in src using signed saturation, and store the packed 32-bit results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_expand_epi8Experimentalavx512vbmi2,avx512vl

Load contiguous active 8-bit integers from a (those with their respective bit set in mask k), and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_expand_epi16Experimentalavx512vbmi2,avx512vl

Load contiguous active 16-bit integers from a (those with their respective bit set in mask k), and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_expand_epi32Experimentalavx512f,avx512vl

Load contiguous active 32-bit integers from a (those with their respective bit set in mask k), and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_expand_epi64Experimentalavx512f,avx512vl

Load contiguous active 64-bit integers from a (those with their respective bit set in mask k), and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_expand_pdExperimentalavx512f,avx512vl

Load contiguous active double-precision (64-bit) floating-point elements from a (those with their respective bit set in mask k), and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_expand_psExperimentalavx512f,avx512vl

Load contiguous active single-precision (32-bit) floating-point elements from a (those with their respective bit set in mask k), and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_extractf32x4_psExperimentalavx512f,avx512vl

Extract 128 bits (composed of 4 packed single-precision (32-bit) floating-point elements) from a, selected with imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_extracti32x4_epi32Experimentalavx512f,avx512vl

Extract 128 bits (composed of 4 packed 32-bit integers) from a, selected with IMM1, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_fixupimm_pdExperimentalavx512f,avx512vl

Fix up packed double-precision (64-bit) floating-point elements in a and b using packed 64-bit integers in c, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). imm8 is used to set the required flags reporting.

_mm256_maskz_fixupimm_psExperimentalavx512f,avx512vl

Fix up packed single-precision (32-bit) floating-point elements in a and b using packed 32-bit integers in c, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). imm8 is used to set the required flags reporting.

_mm256_maskz_fmadd_pdExperimentalavx512f,avx512vl

Multiply packed double-precision (64-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_fmadd_psExperimentalavx512f,avx512vl

Multiply packed single-precision (32-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_fmaddsub_pdExperimentalavx512f,avx512vl

Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_fmaddsub_psExperimentalavx512f,avx512vl

Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_fmsub_pdExperimentalavx512f,avx512vl

Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_fmsub_psExperimentalavx512f,avx512vl

Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_fmsubadd_pdExperimentalavx512f,avx512vl

Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_fmsubadd_psExperimentalavx512f,avx512vl

Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively subtract and add packed elements in c from/to the intermediate result, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_fnmadd_pdExperimentalavx512f,avx512vl

Multiply packed double-precision (64-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_fnmadd_psExperimentalavx512f,avx512vl

Multiply packed single-precision (32-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_fnmsub_pdExperimentalavx512f,avx512vl

Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_fnmsub_psExperimentalavx512f,avx512vl

Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_getexp_pdExperimentalavx512f,avx512vl

Convert the exponent of each packed double-precision (64-bit) floating-point element in a to a double-precision (64-bit) floating-point number representing the integer exponent, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates floor(log2(x)) for each element.

_mm256_maskz_getexp_psExperimentalavx512f,avx512vl

Convert the exponent of each packed single-precision (32-bit) floating-point element in a to a single-precision (32-bit) floating-point number representing the integer exponent, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates floor(log2(x)) for each element.

_mm256_maskz_getmant_pdExperimentalavx512f,avx512vl

Normalize the mantissas of packed double-precision (64-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1

_mm256_maskz_getmant_psExperimentalavx512f,avx512vl

Normalize the mantissas of packed single-precision (32-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1

_mm256_maskz_gf2p8affine_epi64_epi8Experimentalavx512gfni,avx512bw,avx512vl

Performs an affine transformation on the packed bytes in x. That is computes a*x+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix and b being a constant 8-bit immediate value. Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a.

_mm256_maskz_gf2p8affineinv_epi64_epi8Experimentalavx512gfni,avx512bw,avx512vl

Performs an affine transformation on the inverted packed bytes in x. That is computes a*inv(x)+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix and b being a constant 8-bit immediate value. The inverse of a byte is defined with respect to the reduction polynomial x^8+x^4+x^3+x+1. The inverse of 0 is 0. Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a.

_mm256_maskz_gf2p8mul_epi8Experimentalavx512gfni,avx512bw,avx512vl

Performs a multiplication in GF(2^8) on the packed bytes. The field is in polynomial representation with the reduction polynomial x^8 + x^4 + x^3 + x + 1.

_mm256_maskz_insertf32x4Experimentalavx512f,avx512vl

Copy a to tmp, then insert 128 bits (composed of 4 packed single-precision (32-bit) floating-point elements) from b into tmp at the location specified by imm8. Store tmp to dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_inserti32x4Experimentalavx512f,avx512vl

Copy a to tmp, then insert 128 bits (composed of 4 packed 32-bit integers) from b into tmp at the location specified by imm8. Store tmp to dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_lzcnt_epi32Experimentalavx512cd,avx512vl

Counts the number of leading zero bits in each packed 32-bit integer in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_lzcnt_epi64Experimentalavx512cd,avx512vl

Counts the number of leading zero bits in each packed 64-bit integer in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_madd_epi16Experimentalavx512bw,avx512vl

Multiply packed signed 16-bit integers in a and b, producing intermediate signed 32-bit integers. Horizontally add adjacent pairs of intermediate 32-bit integers, and pack the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_maddubs_epi16Experimentalavx512bw,avx512vl

Multiply packed unsigned 8-bit integers in a by packed signed 8-bit integers in b, producing intermediate signed 16-bit integers. Horizontally add adjacent pairs of intermediate signed 16-bit integers, and pack the saturated results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_max_epi8Experimentalavx512bw,avx512vl

Compare packed signed 8-bit integers in a and b, and store packed maximum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_max_epi16Experimentalavx512bw,avx512vl

Compare packed signed 16-bit integers in a and b, and store packed maximum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_max_epi32Experimentalavx512f,avx512vl

Compare packed signed 32-bit integers in a and b, and store packed maximum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_max_epi64Experimentalavx512f,avx512vl

Compare packed signed 64-bit integers in a and b, and store packed maximum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_max_epu8Experimentalavx512bw,avx512vl

Compare packed unsigned 8-bit integers in a and b, and store packed maximum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_max_epu16Experimentalavx512bw,avx512vl

Compare packed unsigned 16-bit integers in a and b, and store packed maximum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_max_epu32Experimentalavx512f,avx512vl

Compare packed unsigned 32-bit integers in a and b, and store packed maximum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_max_epu64Experimentalavx512f,avx512vl

Compare packed unsigned 64-bit integers in a and b, and store packed maximum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_max_pdExperimentalavx512f,avx512vl

Compare packed double-precision (64-bit) floating-point elements in a and b, and store packed maximum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_max_psExperimentalavx512f,avx512vl

Compare packed single-precision (32-bit) floating-point elements in a and b, and store packed maximum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_min_epi8Experimentalavx512bw,avx512vl

Compare packed signed 8-bit integers in a and b, and store packed minimum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_min_epi16Experimentalavx512bw,avx512vl

Compare packed signed 16-bit integers in a and b, and store packed minimum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_min_epi32Experimentalavx512f,avx512vl

Compare packed signed 32-bit integers in a and b, and store packed minimum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_min_epi64Experimentalavx512f,avx512vl

Compare packed signed 64-bit integers in a and b, and store packed minimum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_min_epu8Experimentalavx512bw,avx512vl

Compare packed unsigned 8-bit integers in a and b, and store packed minimum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_min_epu16Experimentalavx512bw,avx512vl

Compare packed unsigned 16-bit integers in a and b, and store packed minimum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_min_epu32Experimentalavx512f,avx512vl

Compare packed unsigned 32-bit integers in a and b, and store packed minimum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_min_epu64Experimentalavx512f,avx512vl

Compare packed unsigned 64-bit integers in a and b, and store packed minimum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_min_pdExperimentalavx512f,avx512vl

Compare packed double-precision (64-bit) floating-point elements in a and b, and store packed minimum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_min_psExperimentalavx512f,avx512vl

Compare packed single-precision (32-bit) floating-point elements in a and b, and store packed minimum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_mov_epi8Experimentalavx512bw,avx512vl

Move packed 8-bit integers from a into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_mov_epi16Experimentalavx512bw,avx512vl

Move packed 16-bit integers from a into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_mov_epi32Experimentalavx512f,avx512vl

Move packed 32-bit integers from a into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_mov_epi64Experimentalavx512f,avx512vl

Move packed 64-bit integers from a into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_mov_pdExperimentalavx512f,avx512vl

Move packed double-precision (64-bit) floating-point elements from a into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_mov_psExperimentalavx512f,avx512vl

Move packed single-precision (32-bit) floating-point elements from a into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_movedup_pdExperimentalavx512f,avx512vl

Duplicate even-indexed double-precision (64-bit) floating-point elements from a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_movehdup_psExperimentalavx512f,avx512vl

Duplicate odd-indexed single-precision (32-bit) floating-point elements from a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_moveldup_psExperimentalavx512f,avx512vl

Duplicate even-indexed single-precision (32-bit) floating-point elements from a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_mul_epi32Experimentalavx512f,avx512vl

Multiply the low signed 32-bit integers from each packed 64-bit element in a and b, and store the signed 64-bit results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_mul_epu32Experimentalavx512f,avx512vl

Multiply the low unsigned 32-bit integers from each packed 64-bit element in a and b, and store the unsigned 64-bit results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_mul_pdExperimentalavx512f,avx512vl

Multiply packed double-precision (64-bit) floating-point elements in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_mul_psExperimentalavx512f,avx512vl

Multiply packed single-precision (32-bit) floating-point elements in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_mulhi_epi16Experimentalavx512bw,avx512vl

Multiply the packed signed 16-bit integers in a and b, producing intermediate 32-bit integers, and store the high 16 bits of the intermediate integers in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_mulhi_epu16Experimentalavx512bw,avx512vl

Multiply the packed unsigned 16-bit integers in a and b, producing intermediate 32-bit integers, and store the high 16 bits of the intermediate integers in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_mulhrs_epi16Experimentalavx512bw,avx512vl

Multiply packed signed 16-bit integers in a and b, producing intermediate signed 32-bit integers. Truncate each intermediate integer to the 18 most significant bits, round by adding 1, and store bits [16:1] to dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_mullo_epi16Experimentalavx512bw,avx512vl

Multiply the packed 16-bit integers in a and b, producing intermediate 32-bit integers, and store the low 16 bits of the intermediate integers in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_mullo_epi32Experimentalavx512f,avx512vl

Multiply the packed 32-bit integers in a and b, producing intermediate 64-bit integers, and store the low 32 bits of the intermediate integers in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_multishift_epi64_epi8Experimentalavx512vbmi,avx512vl

For each 64-bit element in b, select 8 unaligned bytes using a byte-granular shift control within the corresponding 64-bit element of a, and store the 8 assembled bytes to the corresponding 64-bit element of dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_or_epi32Experimentalavx512f,avx512vl

Compute the bitwise OR of packed 32-bit integers in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_or_epi64Experimentalavx512f,avx512vl

Compute the bitwise OR of packed 64-bit integers in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_packs_epi16Experimentalavx512bw,avx512vl

Convert packed signed 16-bit integers from a and b to packed 8-bit integers using signed saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_packs_epi32Experimentalavx512bw,avx512vl

Convert packed signed 32-bit integers from a and b to packed 16-bit integers using signed saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_packus_epi16Experimentalavx512bw,avx512vl

Convert packed signed 16-bit integers from a and b to packed 8-bit integers using unsigned saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_packus_epi32Experimentalavx512bw,avx512vl

Convert packed signed 32-bit integers from a and b to packed 16-bit integers using unsigned saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_permute_pdExperimentalavx512f,avx512vl

Shuffle double-precision (64-bit) floating-point elements in a within 128-bit lanes using the control in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_permute_psExperimentalavx512f,avx512vl

Shuffle single-precision (32-bit) floating-point elements in a within 128-bit lanes using the control in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_permutevar_pdExperimentalavx512f,avx512vl

Shuffle double-precision (64-bit) floating-point elements in a within 128-bit lanes using the control in b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_permutevar_psExperimentalavx512f,avx512vl

Shuffle single-precision (32-bit) floating-point elements in a within 128-bit lanes using the control in b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_permutex2var_epi8Experimentalavx512vbmi,avx512vl

Shuffle 8-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_permutex2var_epi16Experimentalavx512bw,avx512vl

Shuffle 16-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_permutex2var_epi32Experimentalavx512f,avx512vl

Shuffle 32-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_permutex2var_epi64Experimentalavx512f,avx512vl

Shuffle 64-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_permutex2var_pdExperimentalavx512f,avx512vl

Shuffle double-precision (64-bit) floating-point elements in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_permutex2var_psExperimentalavx512f,avx512vl

Shuffle single-precision (32-bit) floating-point elements in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_permutex_epi64Experimentalavx512f,avx512vl

Shuffle 64-bit integers in a within 256-bit lanes using the control in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_permutex_pdExperimentalavx512f,avx512vl

Shuffle double-precision (64-bit) floating-point elements in a within 256-bit lanes using the control in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_permutexvar_epi8Experimentalavx512vbmi,avx512vl

Shuffle 8-bit integers in a across lanes using the corresponding index in idx, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_permutexvar_epi16Experimentalavx512bw,avx512vl

Shuffle 16-bit integers in a across lanes using the corresponding index in idx, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_permutexvar_epi32Experimentalavx512f,avx512vl

Shuffle 32-bit integers in a across lanes using the corresponding index in idx, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_permutexvar_epi64Experimentalavx512f,avx512vl

Shuffle 64-bit integers in a across lanes using the corresponding index in idx, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_permutexvar_pdExperimentalavx512f,avx512vl

Shuffle double-precision (64-bit) floating-point elements in a across lanes using the corresponding index in idx, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_permutexvar_psExperimentalavx512f,avx512vl

Shuffle single-precision (32-bit) floating-point elements in a across lanes using the corresponding index in idx, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_popcnt_epi8Experimentalavx512bitalg,avx512vl

For each packed 8-bit integer maps the value to the number of logical 1 bits.

_mm256_maskz_popcnt_epi16Experimentalavx512bitalg,avx512vl

For each packed 16-bit integer maps the value to the number of logical 1 bits.

_mm256_maskz_popcnt_epi32Experimentalavx512vpopcntdq,avx512vl

For each packed 32-bit integer maps the value to the number of logical 1 bits.

_mm256_maskz_popcnt_epi64Experimentalavx512vpopcntdq,avx512vl

For each packed 64-bit integer maps the value to the number of logical 1 bits.

_mm256_maskz_rcp14_pdExperimentalavx512f,avx512vl

Compute the approximate reciprocal of packed double-precision (64-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14.

_mm256_maskz_rcp14_psExperimentalavx512f,avx512vl

Compute the approximate reciprocal of packed single-precision (32-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14.

_mm256_maskz_rol_epi32Experimentalavx512f,avx512vl

Rotate the bits in each packed 32-bit integer in a to the left by the number of bits specified in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_rol_epi64Experimentalavx512f,avx512vl

Rotate the bits in each packed 64-bit integer in a to the left by the number of bits specified in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_rolv_epi32Experimentalavx512f,avx512vl

Rotate the bits in each packed 32-bit integer in a to the left by the number of bits specified in the corresponding element of b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_rolv_epi64Experimentalavx512f,avx512vl

Rotate the bits in each packed 64-bit integer in a to the left by the number of bits specified in the corresponding element of b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_ror_epi32Experimentalavx512f,avx512vl

Rotate the bits in each packed 32-bit integer in a to the right by the number of bits specified in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_ror_epi64Experimentalavx512f,avx512vl

Rotate the bits in each packed 64-bit integer in a to the right by the number of bits specified in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_rorv_epi32Experimentalavx512f,avx512vl

Rotate the bits in each packed 32-bit integer in a to the right by the number of bits specified in the corresponding element of b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_rorv_epi64Experimentalavx512f,avx512vl

Rotate the bits in each packed 64-bit integer in a to the right by the number of bits specified in the corresponding element of b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_roundscale_pdExperimentalavx512f,avx512vl

Round packed double-precision (64-bit) floating-point elements in a to the number of fraction bits specified by imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
Rounding is done according to the imm8[2:0] parameter, which can be one of:
_MM_FROUND_TO_NEAREST_INT // round to nearest
_MM_FROUND_TO_NEG_INF // round down
_MM_FROUND_TO_POS_INF // round up
_MM_FROUND_TO_ZERO // truncate
_MM_FROUND_CUR_DIRECTION // use MXCSR.RC; see _MM_SET_ROUNDING_MODE

_mm256_maskz_roundscale_psExperimentalavx512f,avx512vl

Round packed single-precision (32-bit) floating-point elements in a to the number of fraction bits specified by imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
Rounding is done according to the imm8[2:0] parameter, which can be one of:
_MM_FROUND_TO_NEAREST_INT // round to nearest
_MM_FROUND_TO_NEG_INF // round down
_MM_FROUND_TO_POS_INF // round up
_MM_FROUND_TO_ZERO // truncate
_MM_FROUND_CUR_DIRECTION // use MXCSR.RC; see _MM_SET_ROUNDING_MODE

_mm256_maskz_rsqrt14_pdExperimentalavx512f,avx512vl

Compute the approximate reciprocal square root of packed double-precision (64-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14.

_mm256_maskz_rsqrt14_psExperimentalavx512f,avx512vl

Compute the approximate reciprocal square root of packed single-precision (32-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14.

_mm256_maskz_scalef_pdExperimentalavx512f,avx512vl

Scale the packed double-precision (64-bit) floating-point elements in a using values from b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_scalef_psExperimentalavx512f,avx512vl

Scale the packed single-precision (32-bit) floating-point elements in a using values from b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_set1_epi8Experimentalavx512bw,avx512vl

Broadcast 8-bit integer a to all elements of dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_set1_epi16Experimentalavx512bw,avx512vl

Broadcast the low packed 16-bit integer from a to all elements of dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_set1_epi32Experimentalavx512f,avx512vl

Broadcast 32-bit integer a to all elements of dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_set1_epi64Experimentalavx512f,avx512vl

Broadcast 64-bit integer a to all elements of dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_shldi_epi16Experimentalavx512vbmi2,avx512vl

Concatenate packed 16-bit integers in a and b producing an intermediate 32-bit result. Shift the result left by imm8 bits, and store the upper 16-bits in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_shldi_epi32Experimentalavx512vbmi2,avx512vl

Concatenate packed 32-bit integers in a and b producing an intermediate 64-bit result. Shift the result left by imm8 bits, and store the upper 32-bits in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_shldi_epi64Experimentalavx512vbmi2,avx512vl

Concatenate packed 64-bit integers in a and b producing an intermediate 128-bit result. Shift the result left by imm8 bits, and store the upper 64-bits in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_shldv_epi16Experimentalavx512vbmi2,avx512vl

Concatenate packed 16-bit integers in a and b producing an intermediate 32-bit result. Shift the result left by the amount specified in the corresponding element of c, and store the upper 16-bits in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_shldv_epi32Experimentalavx512vbmi2,avx512vl

Concatenate packed 32-bit integers in a and b producing an intermediate 64-bit result. Shift the result left by the amount specified in the corresponding element of c, and store the upper 32-bits in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_shldv_epi64Experimentalavx512vbmi2,avx512vl

Concatenate packed 64-bit integers in a and b producing an intermediate 128-bit result. Shift the result left by the amount specified in the corresponding element of c, and store the upper 64-bits in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_shrdi_epi16Experimentalavx512vbmi2,avx512vl

Concatenate packed 16-bit integers in b and a producing an intermediate 32-bit result. Shift the result right by imm8 bits, and store the lower 16-bits in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_shrdi_epi32Experimentalavx512vbmi2,avx512vl

Concatenate packed 32-bit integers in b and a producing an intermediate 64-bit result. Shift the result right by imm8 bits, and store the lower 32-bits in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_shrdi_epi64Experimentalavx512vbmi2,avx512vl

Concatenate packed 64-bit integers in b and a producing an intermediate 128-bit result. Shift the result right by imm8 bits, and store the lower 64-bits in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_shrdv_epi16Experimentalavx512vbmi2,avx512vl

Concatenate packed 16-bit integers in b and a producing an intermediate 32-bit result. Shift the result right by the amount specified in the corresponding element of c, and store the lower 16-bits in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_shrdv_epi32Experimentalavx512vbmi2,avx512vl

Concatenate packed 32-bit integers in b and a producing an intermediate 64-bit result. Shift the result right by the amount specified in the corresponding element of c, and store the lower 32-bits in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_shrdv_epi64Experimentalavx512vbmi2,avx512vl

Concatenate packed 64-bit integers in b and a producing an intermediate 128-bit result. Shift the result right by the amount specified in the corresponding element of c, and store the lower 64-bits in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_shuffle_epi8Experimentalavx512bw,avx512vl

Shuffle packed 8-bit integers in a according to shuffle control mask in the corresponding 8-bit element of b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_shuffle_epi32Experimentalavx512f,avx512vl

Shuffle 32-bit integers in a within 128-bit lanes using the control in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_shuffle_f32x4Experimentalavx512f,avx512vl

Shuffle 128-bits (composed of 4 single-precision (32-bit) floating-point elements) selected by imm8 from a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_shuffle_f64x2Experimentalavx512f,avx512vl

Shuffle 128-bits (composed of 2 double-precision (64-bit) floating-point elements) selected by imm8 from a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_shuffle_i32x4Experimentalavx512f,avx512vl

Shuffle 128-bits (composed of 4 32-bit integers) selected by imm8 from a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_shuffle_i64x2Experimentalavx512f,avx512vl

Shuffle 128-bits (composed of 2 64-bit integers) selected by imm8 from a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_shuffle_pdExperimentalavx512f,avx512vl

Shuffle double-precision (64-bit) floating-point elements within 128-bit lanes using the control in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_shuffle_psExperimentalavx512f,avx512vl

Shuffle single-precision (32-bit) floating-point elements in a within 128-bit lanes using the control in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_shufflehi_epi16Experimentalavx512bw,avx512vl

Shuffle 16-bit integers in the high 64 bits of 128-bit lanes of a using the control in imm8. Store the results in the high 64 bits of 128-bit lanes of dst, with the low 64 bits of 128-bit lanes being copied from from a to dst, using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_shufflelo_epi16Experimentalavx512bw,avx512vl

Shuffle 16-bit integers in the low 64 bits of 128-bit lanes of a using the control in imm8. Store the results in the low 64 bits of 128-bit lanes of dst, with the high 64 bits of 128-bit lanes being copied from from a to dst, using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_sll_epi16Experimentalavx512bw,avx512vl

Shift packed 16-bit integers in a left by count while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_sll_epi32Experimentalavx512f,avx512vl

Shift packed 32-bit integers in a left by count while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_sll_epi64Experimentalavx512f,avx512vl

Shift packed 64-bit integers in a left by count while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_slli_epi16Experimentalavx512bw,avx512vl

Shift packed 16-bit integers in a left by imm8 while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_slli_epi32Experimentalavx512f,avx512vl

Shift packed 32-bit integers in a left by imm8 while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_slli_epi64Experimentalavx512f,avx512vl

Shift packed 64-bit integers in a left by imm8 while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_sllv_epi16Experimentalavx512bw,avx512vl

Shift packed 16-bit integers in a left by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_sllv_epi32Experimentalavx512f,avx512vl

Shift packed 32-bit integers in a left by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_sllv_epi64Experimentalavx512f,avx512vl

Shift packed 64-bit integers in a left by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_sqrt_pdExperimentalavx512f,avx512vl

Compute the square root of packed double-precision (64-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_sqrt_psExperimentalavx512f,avx512vl

Compute the square root of packed single-precision (32-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_sra_epi16Experimentalavx512bw,avx512vl

Shift packed 16-bit integers in a right by count while shifting in sign bits, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_sra_epi32Experimentalavx512f,avx512vl

Shift packed 32-bit integers in a right by count while shifting in sign bits, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_sra_epi64Experimentalavx512f,avx512vl

Shift packed 64-bit integers in a right by count while shifting in sign bits, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_srai_epi16Experimentalavx512bw,avx512vl

Shift packed 16-bit integers in a right by imm8 while shifting in sign bits, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_srai_epi32Experimentalavx512f,avx512vl

Shift packed 32-bit integers in a right by imm8 while shifting in sign bits, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_srai_epi64Experimentalavx512f,avx512vl

Shift packed 64-bit integers in a right by imm8 while shifting in sign bits, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_srav_epi16Experimentalavx512bw,avx512vl

Shift packed 16-bit integers in a right by the amount specified by the corresponding element in count while shifting in sign bits, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_srav_epi32Experimentalavx512f,avx512vl

Shift packed 32-bit integers in a right by the amount specified by the corresponding element in count while shifting in sign bits, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_srav_epi64Experimentalavx512f,avx512vl

Shift packed 64-bit integers in a right by the amount specified by the corresponding element in count while shifting in sign bits, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_srl_epi16Experimentalavx512bw,avx512vl

Shift packed 16-bit integers in a right by count while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_srl_epi32Experimentalavx512f,avx512vl

Shift packed 32-bit integers in a right by count while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_srl_epi64Experimentalavx512f,avx512vl

Shift packed 64-bit integers in a right by count while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_srli_epi16Experimentalavx512bw,avx512vl

Shift packed 16-bit integers in a right by imm8 while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_srli_epi32Experimentalavx512f,avx512vl

Shift packed 32-bit integers in a right by imm8 while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_srli_epi64Experimentalavx512f,avx512vl

Shift packed 64-bit integers in a right by imm8 while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_srlv_epi16Experimentalavx512bw,avx512vl

Shift packed 16-bit integers in a right by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_srlv_epi32Experimentalavx512f,avx512vl

Shift packed 32-bit integers in a right by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_srlv_epi64Experimentalavx512f,avx512vl

Shift packed 64-bit integers in a right by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_sub_epi8Experimentalavx512bw,avx512vl

Subtract packed 8-bit integers in b from packed 8-bit integers in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_sub_epi16Experimentalavx512bw,avx512vl

Subtract packed 16-bit integers in b from packed 16-bit integers in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_sub_epi32Experimentalavx512f,avx512vl

Subtract packed 32-bit integers in b from packed 32-bit integers in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_sub_epi64Experimentalavx512f,avx512vl

Subtract packed 64-bit integers in b from packed 64-bit integers in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_sub_pdExperimentalavx512f,avx512vl

Subtract packed double-precision (64-bit) floating-point elements in b from packed double-precision (64-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_sub_psExperimentalavx512f,avx512vl

Subtract packed single-precision (32-bit) floating-point elements in b from packed single-precision (32-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_subs_epi8Experimentalavx512bw,avx512vl

Subtract packed signed 8-bit integers in b from packed 8-bit integers in a using saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_subs_epi16Experimentalavx512bw,avx512vl

Subtract packed signed 16-bit integers in b from packed 16-bit integers in a using saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_subs_epu8Experimentalavx512bw,avx512vl

Subtract packed unsigned 8-bit integers in b from packed unsigned 8-bit integers in a using saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_subs_epu16Experimentalavx512bw,avx512vl

Subtract packed unsigned 16-bit integers in b from packed unsigned 16-bit integers in a using saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_ternarylogic_epi32Experimentalavx512f,avx512vl

Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in imm8. For each bit in each packed 32-bit integer, the corresponding bit from a, b, and c are used to form a 3 bit index into imm8, and the value at that bit in imm8 is written to the corresponding bit in dst using zeromask k at 32-bit granularity (32-bit elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_ternarylogic_epi64Experimentalavx512f,avx512vl

Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in imm8. For each bit in each packed 64-bit integer, the corresponding bit from a, b, and c are used to form a 3 bit index into imm8, and the value at that bit in imm8 is written to the corresponding bit in dst using zeromask k at 64-bit granularity (64-bit elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_unpackhi_epi8Experimentalavx512bw,avx512vl

Unpack and interleave 8-bit integers from the high half of each 128-bit lane in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_unpackhi_epi16Experimentalavx512bw,avx512vl

Unpack and interleave 16-bit integers from the high half of each 128-bit lane in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_unpackhi_epi32Experimentalavx512f,avx512vl

Unpack and interleave 32-bit integers from the high half of each 128-bit lane in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_unpackhi_epi64Experimentalavx512f,avx512vl

Unpack and interleave 64-bit integers from the high half of each 128-bit lane in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_unpackhi_pdExperimentalavx512f,avx512vl

Unpack and interleave double-precision (64-bit) floating-point elements from the high half of each 128-bit lane in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_unpackhi_psExperimentalavx512f,avx512vl

Unpack and interleave single-precision (32-bit) floating-point elements from the high half of each 128-bit lane in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_unpacklo_epi8Experimentalavx512bw,avx512vl

Unpack and interleave 8-bit integers from the low half of each 128-bit lane in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_unpacklo_epi16Experimentalavx512bw,avx512vl

Unpack and interleave 16-bit integers from the low half of each 128-bit lane in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_unpacklo_epi32Experimentalavx512f,avx512vl

Unpack and interleave 32-bit integers from the low half of each 128-bit lane in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_unpacklo_epi64Experimentalavx512f,avx512vl

Unpack and interleave 64-bit integers from the low half of each 128-bit lane in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_unpacklo_pdExperimentalavx512f,avx512vl

Unpack and interleave double-precision (64-bit) floating-point elements from the low half of each 128-bit lane in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_unpacklo_psExperimentalavx512f,avx512vl

Unpack and interleave single-precision (32-bit) floating-point elements from the low half of each 128-bit lane in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_xor_epi32Experimentalavx512f,avx512vl

Compute the bitwise XOR of packed 32-bit integers in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_xor_epi64Experimentalavx512f,avx512vl

Compute the bitwise XOR of packed 64-bit integers in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_max_epi64Experimentalavx512f,avx512vl

Compare packed signed 64-bit integers in a and b, and store packed maximum values in dst.

_mm256_max_epu64Experimentalavx512f,avx512vl

Compare packed unsigned 64-bit integers in a and b, and store packed maximum values in dst.

_mm256_min_epi64Experimentalavx512f,avx512vl

Compare packed signed 64-bit integers in a and b, and store packed minimum values in dst.

_mm256_min_epu64Experimentalavx512f,avx512vl

Compare packed unsigned 64-bit integers in a and b, and store packed minimum values in dst.

_mm256_movepi8_maskExperimentalavx512bw,avx512vl

Set each bit of mask register k based on the most significant bit of the corresponding packed 8-bit integer in a.

_mm256_movepi16_maskExperimentalavx512bw,avx512vl

Set each bit of mask register k based on the most significant bit of the corresponding packed 16-bit integer in a.

_mm256_movm_epi8Experimentalavx512bw,avx512vl

Set each packed 8-bit integer in dst to all ones or all zeros based on the value of the corresponding bit in k.

_mm256_movm_epi16Experimentalavx512bw,avx512vl

Set each packed 16-bit integer in dst to all ones or all zeros based on the value of the corresponding bit in k.

_mm256_multishift_epi64_epi8Experimentalavx512vbmi,avx512vl

For each 64-bit element in b, select 8 unaligned bytes using a byte-granular shift control within the corresponding 64-bit element of a, and store the 8 assembled bytes to the corresponding 64-bit element of dst.

_mm256_or_epi32Experimentalavx512f,avx512vl

Compute the bitwise OR of packed 32-bit integers in a and b, and store the results in dst.

_mm256_or_epi64Experimentalavx512f,avx512vl

Compute the bitwise OR of packed 64-bit integers in a and b, and store the resut in dst.

_mm256_permutex2var_epi8Experimentalavx512vbmi,avx512vl

Shuffle 8-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst.

_mm256_permutex2var_epi16Experimentalavx512bw,avx512vl

Shuffle 16-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst.

_mm256_permutex2var_epi32Experimentalavx512f,avx512vl

Shuffle 32-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst.

_mm256_permutex2var_epi64Experimentalavx512f,avx512vl

Shuffle 64-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst.

_mm256_permutex2var_pdExperimentalavx512f,avx512vl

Shuffle double-precision (64-bit) floating-point elements in a and b across lanes using the corresponding selector and index in idx, and store the results in dst.

_mm256_permutex2var_psExperimentalavx512f,avx512vl

Shuffle single-precision (32-bit) floating-point elements in a and b across lanes using the corresponding selector and index in idx, and store the results in dst.

_mm256_permutex_epi64Experimentalavx512f,avx512vl

Shuffle 64-bit integers in a within 256-bit lanes using the control in imm8, and store the results in dst.

_mm256_permutex_pdExperimentalavx512f,avx512vl

Shuffle double-precision (64-bit) floating-point elements in a within 256-bit lanes using the control in imm8, and store the results in dst.

_mm256_permutexvar_epi8Experimentalavx512vbmi,avx512vl

Shuffle 8-bit integers in a across lanes using the corresponding index in idx, and store the results in dst.

_mm256_permutexvar_epi16Experimentalavx512bw,avx512vl

Shuffle 16-bit integers in a across lanes using the corresponding index in idx, and store the results in dst.

_mm256_permutexvar_epi32Experimentalavx512f,avx512vl

Shuffle 32-bit integers in a across lanes using the corresponding index in idx, and store the results in dst.

_mm256_permutexvar_epi64Experimentalavx512f,avx512vl

Shuffle 64-bit integers in a across lanes using the corresponding index in idx, and store the results in dst.

_mm256_permutexvar_pdExperimentalavx512f,avx512vl

Shuffle double-precision (64-bit) floating-point elements in a across lanes using the corresponding index in idx, and store the results in dst.

_mm256_permutexvar_psExperimentalavx512f,avx512vl

Shuffle single-precision (32-bit) floating-point elements in a across lanes using the corresponding index in idx.

_mm256_popcnt_epi8Experimentalavx512bitalg,avx512vl

For each packed 8-bit integer maps the value to the number of logical 1 bits.

_mm256_popcnt_epi16Experimentalavx512bitalg,avx512vl

For each packed 16-bit integer maps the value to the number of logical 1 bits.

_mm256_popcnt_epi32Experimentalavx512vpopcntdq,avx512vl

For each packed 32-bit integer maps the value to the number of logical 1 bits.

_mm256_popcnt_epi64Experimentalavx512vpopcntdq,avx512vl

For each packed 64-bit integer maps the value to the number of logical 1 bits.

_mm256_rcp14_pdExperimentalavx512f,avx512vl

Compute the approximate reciprocal of packed double-precision (64-bit) floating-point elements in a, and store the results in dst. The maximum relative error for this approximation is less than 2^-14.

_mm256_rcp14_psExperimentalavx512f,avx512vl

Compute the approximate reciprocal of packed single-precision (32-bit) floating-point elements in a, and store the results in dst. The maximum relative error for this approximation is less than 2^-14.

_mm256_rol_epi32Experimentalavx512f,avx512vl

Rotate the bits in each packed 32-bit integer in a to the left by the number of bits specified in imm8, and store the results in dst.

_mm256_rol_epi64Experimentalavx512f,avx512vl

Rotate the bits in each packed 64-bit integer in a to the left by the number of bits specified in imm8, and store the results in dst.

_mm256_rolv_epi32Experimentalavx512f,avx512vl

Rotate the bits in each packed 32-bit integer in a to the left by the number of bits specified in the corresponding element of b, and store the results in dst.

_mm256_rolv_epi64Experimentalavx512f,avx512vl

Rotate the bits in each packed 64-bit integer in a to the left by the number of bits specified in the corresponding element of b, and store the results in dst.

_mm256_ror_epi32Experimentalavx512f,avx512vl

Rotate the bits in each packed 32-bit integer in a to the right by the number of bits specified in imm8, and store the results in dst.

_mm256_ror_epi64Experimentalavx512f,avx512vl

Rotate the bits in each packed 64-bit integer in a to the right by the number of bits specified in imm8, and store the results in dst.

_mm256_rorv_epi32Experimentalavx512f,avx512vl

Rotate the bits in each packed 32-bit integer in a to the right by the number of bits specified in the corresponding element of b, and store the results in dst.

_mm256_rorv_epi64Experimentalavx512f,avx512vl

Rotate the bits in each packed 64-bit integer in a to the right by the number of bits specified in the corresponding element of b, and store the results in dst.

_mm256_roundscale_pdExperimentalavx512f,avx512vl

Round packed double-precision (64-bit) floating-point elements in a to the number of fraction bits specified by imm8, and store the results in dst.
Rounding is done according to the imm8[2:0] parameter, which can be one of:
_MM_FROUND_TO_NEAREST_INT // round to nearest
_MM_FROUND_TO_NEG_INF // round down
_MM_FROUND_TO_POS_INF // round up
_MM_FROUND_TO_ZERO // truncate
_MM_FROUND_CUR_DIRECTION // use MXCSR.RC; see _MM_SET_ROUNDING_MODE

_mm256_roundscale_psExperimentalavx512f,avx512vl

Round packed single-precision (32-bit) floating-point elements in a to the number of fraction bits specified by imm8, and store the results in dst.
Rounding is done according to the imm8[2:0] parameter, which can be one of:
_MM_FROUND_TO_NEAREST_INT // round to nearest
_MM_FROUND_TO_NEG_INF // round down
_MM_FROUND_TO_POS_INF // round up
_MM_FROUND_TO_ZERO // truncate
_MM_FROUND_CUR_DIRECTION // use MXCSR.RC; see _MM_SET_ROUNDING_MODE

_mm256_scalef_pdExperimentalavx512f,avx512vl

Scale the packed double-precision (64-bit) floating-point elements in a using values from b, and store the results in dst.

_mm256_scalef_psExperimentalavx512f,avx512vl

Scale the packed single-precision (32-bit) floating-point elements in a using values from b, and store the results in dst.

_mm256_shldi_epi16Experimentalavx512vbmi2,avx512vl

Concatenate packed 16-bit integers in a and b producing an intermediate 32-bit result. Shift the result left by imm8 bits, and store the upper 16-bits in dst).

_mm256_shldi_epi32Experimentalavx512vbmi2,avx512vl

Concatenate packed 32-bit integers in a and b producing an intermediate 64-bit result. Shift the result left by imm8 bits, and store the upper 32-bits in dst.

_mm256_shldi_epi64Experimentalavx512vbmi2,avx512vl

Concatenate packed 64-bit integers in a and b producing an intermediate 128-bit result. Shift the result left by imm8 bits, and store the upper 64-bits in dst).

_mm256_shldv_epi16Experimentalavx512vbmi2,avx512vl

Concatenate packed 16-bit integers in a and b producing an intermediate 32-bit result. Shift the result left by the amount specified in the corresponding element of c, and store the upper 16-bits in dst.

_mm256_shldv_epi32Experimentalavx512vbmi2,avx512vl

Concatenate packed 32-bit integers in a and b producing an intermediate 64-bit result. Shift the result left by the amount specified in the corresponding element of c, and store the upper 32-bits in dst.

_mm256_shldv_epi64Experimentalavx512vbmi2,avx512vl

Concatenate packed 64-bit integers in a and b producing an intermediate 128-bit result. Shift the result left by the amount specified in the corresponding element of c, and store the upper 64-bits in dst.

_mm256_shrdi_epi16Experimentalavx512vbmi2,avx512vl

Concatenate packed 16-bit integers in b and a producing an intermediate 32-bit result. Shift the result right by imm8 bits, and store the lower 16-bits in dst.

_mm256_shrdi_epi32Experimentalavx512vbmi2,avx512vl

Concatenate packed 32-bit integers in b and a producing an intermediate 64-bit result. Shift the result right by imm8 bits, and store the lower 32-bits in dst.

_mm256_shrdi_epi64Experimentalavx512vbmi2,avx512vl

Concatenate packed 64-bit integers in b and a producing an intermediate 128-bit result. Shift the result right by imm8 bits, and store the lower 64-bits in dst.

_mm256_shrdv_epi16Experimentalavx512vbmi2,avx512vl

Concatenate packed 16-bit integers in b and a producing an intermediate 32-bit result. Shift the result right by the amount specified in the corresponding element of c, and store the lower 16-bits in dst.

_mm256_shrdv_epi32Experimentalavx512vbmi2,avx512vl

Concatenate packed 32-bit integers in b and a producing an intermediate 64-bit result. Shift the result right by the amount specified in the corresponding element of c, and store the lower 32-bits in dst.

_mm256_shrdv_epi64Experimentalavx512vbmi2,avx512vl

Concatenate packed 64-bit integers in b and a producing an intermediate 128-bit result. Shift the result right by the amount specified in the corresponding element of c, and store the lower 64-bits in dst.

_mm256_shuffle_f32x4Experimentalavx512f,avx512vl

Shuffle 128-bits (composed of 4 single-precision (32-bit) floating-point elements) selected by imm8 from a and b, and store the results in dst.

_mm256_shuffle_f64x2Experimentalavx512f,avx512vl

Shuffle 128-bits (composed of 2 double-precision (64-bit) floating-point elements) selected by imm8 from a and b, and store the results in dst.

_mm256_shuffle_i32x4Experimentalavx512f,avx512vl

Shuffle 128-bits (composed of 4 32-bit integers) selected by imm8 from a and b, and store the results in dst.

_mm256_shuffle_i64x2Experimentalavx512f,avx512vl

Shuffle 128-bits (composed of 2 64-bit integers) selected by imm8 from a and b, and store the results in dst.

_mm256_sllv_epi16Experimentalavx512bw,avx512vl

Shift packed 16-bit integers in a left by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst.

_mm256_sra_epi64Experimentalavx512f,avx512vl

Shift packed 64-bit integers in a right by count while shifting in sign bits, and store the results in dst.

_mm256_srai_epi64Experimentalavx512f,avx512vl

Shift packed 64-bit integers in a right by imm8 while shifting in sign bits, and store the results in dst.

_mm256_srav_epi16Experimentalavx512bw,avx512vl

Shift packed 16-bit integers in a right by the amount specified by the corresponding element in count while shifting in sign bits, and store the results in dst.

_mm256_srav_epi64Experimentalavx512f,avx512vl

Shift packed 64-bit integers in a right by the amount specified by the corresponding element in count while shifting in sign bits, and store the results in dst.

_mm256_srlv_epi16Experimentalavx512bw,avx512vl

Shift packed 16-bit integers in a right by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst.

_mm256_store_epi32Experimentalavx512f,avx512vl

Store 256-bits (composed of 8 packed 32-bit integers) from a into memory. mem_addr must be aligned on a 32-byte boundary or a general-protection exception may be generated.

_mm256_store_epi64Experimentalavx512f,avx512vl

Store 256-bits (composed of 4 packed 64-bit integers) from a into memory. mem_addr must be aligned on a 32-byte boundary or a general-protection exception may be generated.

_mm256_storeu_epi8Experimentalavx512bw,avx512vl

Store 256-bits (composed of 32 packed 8-bit integers) from a into memory. mem_addr does not need to be aligned on any particular boundary.

_mm256_storeu_epi16Experimentalavx512bw,avx512vl

Store 256-bits (composed of 16 packed 16-bit integers) from a into memory. mem_addr does not need to be aligned on any particular boundary.

_mm256_storeu_epi32Experimentalavx512f,avx512vl

Store 256-bits (composed of 8 packed 32-bit integers) from a into memory. mem_addr does not need to be aligned on any particular boundary.

_mm256_storeu_epi64Experimentalavx512f,avx512vl

Store 256-bits (composed of 4 packed 64-bit integers) from a into memory. mem_addr does not need to be aligned on any particular boundary.

_mm256_ternarylogic_epi32Experimentalavx512f,avx512vl

Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in imm8. For each bit in each packed 32-bit integer, the corresponding bit from a, b, and c are used to form a 3 bit index into imm8, and the value at that bit in imm8 is written to the corresponding bit in dst.

_mm256_ternarylogic_epi64Experimentalavx512f,avx512vl

Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in imm8. For each bit in each packed 64-bit integer, the corresponding bit from a, b, and c are used to form a 3 bit index into imm8, and the value at that bit in imm8 is written to the corresponding bit in dst.

_mm256_test_epi8_maskExperimentalavx512bw,avx512vl

Compute the bitwise AND of packed 8-bit integers in a and b, producing intermediate 8-bit values, and set the corresponding bit in result mask k if the intermediate value is non-zero.

_mm256_test_epi16_maskExperimentalavx512bw,avx512vl

Compute the bitwise AND of packed 16-bit integers in a and b, producing intermediate 16-bit values, and set the corresponding bit in result mask k if the intermediate value is non-zero.

_mm256_test_epi32_maskExperimentalavx512f,avx512vl

Compute the bitwise AND of packed 32-bit integers in a and b, producing intermediate 32-bit values, and set the corresponding bit in result mask k if the intermediate value is non-zero.

_mm256_test_epi64_maskExperimentalavx512f,avx512vl

Compute the bitwise AND of packed 64-bit integers in a and b, producing intermediate 64-bit values, and set the corresponding bit in result mask k if the intermediate value is non-zero.

_mm256_testn_epi8_maskExperimentalavx512bw,avx512vl

Compute the bitwise NAND of packed 8-bit integers in a and b, producing intermediate 8-bit values, and set the corresponding bit in result mask k if the intermediate value is zero.

_mm256_testn_epi16_maskExperimentalavx512bw,avx512vl

Compute the bitwise NAND of packed 16-bit integers in a and b, producing intermediate 16-bit values, and set the corresponding bit in result mask k if the intermediate value is zero.

_mm256_testn_epi32_maskExperimentalavx512f,avx512vl

Compute the bitwise NAND of packed 32-bit integers in a and b, producing intermediate 32-bit values, and set the corresponding bit in result mask k if the intermediate value is zero.

_mm256_testn_epi64_maskExperimentalavx512f,avx512vl

Compute the bitwise NAND of packed 64-bit integers in a and b, producing intermediate 64-bit values, and set the corresponding bit in result mask k if the intermediate value is zero.

_mm256_xor_epi32Experimentalavx512f,avx512vl

Compute the bitwise XOR of packed 32-bit integers in a and b, and store the results in dst.

_mm256_xor_epi64Experimentalavx512f,avx512vl

Compute the bitwise XOR of packed 64-bit integers in a and b, and store the results in dst.

_mm512_abs_epi8Experimentalavx512bw

Compute the absolute value of packed signed 8-bit integers in a, and store the unsigned results in dst.

_mm512_abs_epi16Experimentalavx512bw

Compute the absolute value of packed signed 16-bit integers in a, and store the unsigned results in dst.

_mm512_abs_epi32Experimentalavx512f

Computes the absolute values of packed 32-bit integers in a.

_mm512_abs_epi64Experimentalavx512f

Compute the absolute value of packed signed 64-bit integers in a, and store the unsigned results in dst.

_mm512_abs_pdExperimentalavx512f

Finds the absolute value of each packed double-precision (64-bit) floating-point element in v2, storing the results in dst.

_mm512_abs_psExperimentalavx512f

Finds the absolute value of each packed single-precision (32-bit) floating-point element in v2, storing the results in dst.

_mm512_add_epi8Experimentalavx512bw

Add packed 8-bit integers in a and b, and store the results in dst.

_mm512_add_epi16Experimentalavx512bw

Add packed 16-bit integers in a and b, and store the results in dst.

_mm512_add_epi32Experimentalavx512f

Add packed 32-bit integers in a and b, and store the results in dst.

_mm512_add_epi64Experimentalavx512f

Add packed 64-bit integers in a and b, and store the results in dst.

_mm512_add_pdExperimentalavx512f

Add packed double-precision (64-bit) floating-point elements in a and b, and store the results in dst.

_mm512_add_psExperimentalavx512f

Add packed single-precision (32-bit) floating-point elements in a and b, and store the results in dst.

_mm512_add_round_pdExperimentalavx512f

Add packed double-precision (64-bit) floating-point elements in a and b, and store the results in dst.

_mm512_add_round_psExperimentalavx512f

Add packed single-precision (32-bit) floating-point elements in a and b, and store the results in dst.

_mm512_adds_epi8Experimentalavx512bw

Add packed signed 8-bit integers in a and b using saturation, and store the results in dst.

_mm512_adds_epi16Experimentalavx512bw

Add packed signed 16-bit integers in a and b using saturation, and store the results in dst.

_mm512_adds_epu8Experimentalavx512bw

Add packed unsigned 8-bit integers in a and b using saturation, and store the results in dst.

_mm512_adds_epu16Experimentalavx512bw

Add packed unsigned 16-bit integers in a and b using saturation, and store the results in dst.

_mm512_aesdec_epi128Experimentalavx512vaes,avx512f

Performs one round of an AES decryption flow on each 128-bit word (state) in a using the corresponding 128-bit word (key) in round_key.

_mm512_aesdeclast_epi128Experimentalavx512vaes,avx512f

Performs the last round of an AES decryption flow on each 128-bit word (state) in a using the corresponding 128-bit word (key) in round_key.

_mm512_aesenc_epi128Experimentalavx512vaes,avx512f

Performs one round of an AES encryption flow on each 128-bit word (state) in a using the corresponding 128-bit word (key) in round_key.

_mm512_aesenclast_epi128Experimentalavx512vaes,avx512f

Performs the last round of an AES encryption flow on each 128-bit word (state) in a using the corresponding 128-bit word (key) in round_key.

_mm512_alignr_epi8Experimentalavx512bw

Concatenate pairs of 16-byte blocks in a and b into a 32-byte temporary result, shift the result right by imm8 bytes, and store the low 16 bytes in dst.

_mm512_alignr_epi32Experimentalavx512f

Concatenate a and b into a 128-byte immediate result, shift the result right by imm8 32-bit elements, and store the low 64 bytes (16 elements) in dst.

_mm512_alignr_epi64Experimentalavx512f

Concatenate a and b into a 128-byte immediate result, shift the result right by imm8 64-bit elements, and store the low 64 bytes (8 elements) in dst.

_mm512_and_epi32Experimentalavx512f

Compute the bitwise AND of packed 32-bit integers in a and b, and store the results in dst.

_mm512_and_epi64Experimentalavx512f

Compute the bitwise AND of 512 bits (composed of packed 64-bit integers) in a and b, and store the results in dst.

_mm512_and_si512Experimentalavx512f

Compute the bitwise AND of 512 bits (representing integer data) in a and b, and store the result in dst.

_mm512_andnot_epi32Experimentalavx512f

Compute the bitwise NOT of packed 32-bit integers in a and then AND with b, and store the results in dst.

_mm512_andnot_epi64Experimentalavx512f

Compute the bitwise NOT of 512 bits (composed of packed 64-bit integers) in a and then AND with b, and store the results in dst.

_mm512_andnot_si512Experimentalavx512f

Compute the bitwise NOT of 512 bits (representing integer data) in a and then AND with b, and store the result in dst.

_mm512_avg_epu8Experimentalavx512bw

Average packed unsigned 8-bit integers in a and b, and store the results in dst.

_mm512_avg_epu16Experimentalavx512bw

Average packed unsigned 16-bit integers in a and b, and store the results in dst.

_mm512_bitshuffle_epi64_maskExperimentalavx512bitalg

Considers the input b as packed 64-bit integers and c as packed 8-bit integers. Then groups 8 8-bit values from cas indices into the the bits of the corresponding 64-bit integer. It then selects these bits and packs them into the output.

_mm512_broadcast_f32x4Experimentalavx512f

Broadcast the 4 packed single-precision (32-bit) floating-point elements from a to all elements of dst.

_mm512_broadcast_f64x4Experimentalavx512f

Broadcast the 4 packed double-precision (64-bit) floating-point elements from a to all elements of dst.

_mm512_broadcast_i32x4Experimentalavx512f

Broadcast the 4 packed 32-bit integers from a to all elements of dst.

_mm512_broadcast_i64x4Experimentalavx512f

Broadcast the 4 packed 64-bit integers from a to all elements of dst.

_mm512_broadcastb_epi8Experimentalavx512bw

Broadcast the low packed 8-bit integer from a to all elements of dst.

_mm512_broadcastd_epi32Experimentalavx512f

Broadcast the low packed 32-bit integer from a to all elements of dst.

_mm512_broadcastmb_epi64Experimentalavx512cd

Broadcast the low 8-bits from input mask k to all 64-bit elements of dst.

_mm512_broadcastmw_epi32Experimentalavx512cd

Broadcast the low 16-bits from input mask k to all 32-bit elements of dst.

_mm512_broadcastq_epi64Experimentalavx512f

Broadcast the low packed 64-bit integer from a to all elements of dst.

_mm512_broadcastsd_pdExperimentalavx512f

Broadcast the low double-precision (64-bit) floating-point element from a to all elements of dst.

_mm512_broadcastss_psExperimentalavx512f

Broadcast the low single-precision (32-bit) floating-point element from a to all elements of dst.

_mm512_broadcastw_epi16Experimentalavx512bw

Broadcast the low packed 16-bit integer from a to all elements of dst.

_mm512_bslli_epi128Experimentalavx512bw

Shift 128-bit lanes in a left by imm8 bytes while shifting in zeros, and store the results in dst.

_mm512_bsrli_epi128Experimentalavx512bw

Shift 128-bit lanes in a right by imm8 bytes while shifting in zeros, and store the results in dst.

_mm512_castpd128_pd512Experimentalavx512f

Cast vector of type __m128d to type __m512d; the upper 384 bits of the result are undefined. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.

_mm512_castpd256_pd512Experimentalavx512f

Cast vector of type __m256d to type __m512d; the upper 256 bits of the result are undefined. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.

_mm512_castpd512_pd128Experimentalavx512f

Cast vector of type __m512d to type __m128d. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.

_mm512_castpd512_pd256Experimentalavx512f

Cast vector of type __m512d to type __m256d. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.

_mm512_castpd_psExperimentalavx512f

Cast vector of type __m512d to type __m512. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.

_mm512_castpd_si512Experimentalavx512f

Cast vector of type __m512d to type __m512i. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.

_mm512_castps128_ps512Experimentalavx512f

Cast vector of type __m128 to type __m512; the upper 384 bits of the result are undefined. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.

_mm512_castps256_ps512Experimentalavx512f

Cast vector of type __m256 to type __m512; the upper 256 bits of the result are undefined. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.

_mm512_castps512_ps128Experimentalavx512f

Cast vector of type __m512 to type __m128. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.

_mm512_castps512_ps256Experimentalavx512f

Cast vector of type __m512 to type __m256. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.

_mm512_castps_pdExperimentalavx512f

Cast vector of type __m512 to type __m512d. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.

_mm512_castps_si512Experimentalavx512f

Cast vector of type __m512 to type __m512i. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.

_mm512_castsi128_si512Experimentalavx512f

Cast vector of type __m128i to type __m512i; the upper 384 bits of the result are undefined. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.

_mm512_castsi256_si512Experimentalavx512f

Cast vector of type __m256i to type __m512i; the upper 256 bits of the result are undefined. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.

_mm512_castsi512_pdExperimentalavx512f

Cast vector of type __m512i to type __m512d. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.

_mm512_castsi512_psExperimentalavx512f

Cast vector of type __m512i to type __m512. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.

_mm512_castsi512_si128Experimentalavx512f

Cast vector of type __m512i to type __m128i. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.

_mm512_castsi512_si256Experimentalavx512f

Cast vector of type __m512i to type __m256i. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.

_mm512_clmulepi64_epi128Experimentalavx512vpclmulqdq,avx512f

Performs a carry-less multiplication of two 64-bit polynomials over the finite field GF(2^k) - in each of the 4 128-bit lanes.

_mm512_cmp_epi8_maskExperimentalavx512bw

Compare packed signed 8-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.

_mm512_cmp_epi16_maskExperimentalavx512bw

Compare packed signed 16-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.

_mm512_cmp_epi32_maskExperimentalavx512f

Compare packed signed 32-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.

_mm512_cmp_epi64_maskExperimentalavx512f

Compare packed signed 64-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.

_mm512_cmp_epu8_maskExperimentalavx512bw

Compare packed unsigned 8-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.

_mm512_cmp_epu16_maskExperimentalavx512bw

Compare packed unsigned 16-bit integers in a and b based on the comparison operand specified by IMM8, and store the results in mask vector k.

_mm512_cmp_epu32_maskExperimentalavx512f

Compare packed unsigned 32-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.

_mm512_cmp_epu64_maskExperimentalavx512f

Compare packed unsigned 64-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.

_mm512_cmp_pd_maskExperimentalavx512f

Compare packed double-precision (64-bit) floating-point elements in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.

_mm512_cmp_ps_maskExperimentalavx512f

Compare packed single-precision (32-bit) floating-point elements in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.

_mm512_cmp_round_pd_maskExperimentalavx512f

Compare packed double-precision (64-bit) floating-point elements in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.

_mm512_cmp_round_ps_maskExperimentalavx512f

Compare packed single-precision (32-bit) floating-point elements in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.

_mm512_cmpeq_epi8_maskExperimentalavx512bw

Compare packed signed 8-bit integers in a and b for equality, and store the results in mask vector k.

_mm512_cmpeq_epi16_maskExperimentalavx512bw

Compare packed signed 16-bit integers in a and b for equality, and store the results in mask vector k.

_mm512_cmpeq_epi32_maskExperimentalavx512f

Compare packed 32-bit integers in a and b for equality, and store the results in mask vector k.

_mm512_cmpeq_epi64_maskExperimentalavx512f

Compare packed 64-bit integers in a and b for equality, and store the results in mask vector k.

_mm512_cmpeq_epu8_maskExperimentalavx512bw

Compare packed unsigned 8-bit integers in a and b for equality, and store the results in mask vector k.

_mm512_cmpeq_epu16_maskExperimentalavx512bw

Compare packed unsigned 16-bit integers in a and b for equality, and store the results in mask vector k.

_mm512_cmpeq_epu32_maskExperimentalavx512f

Compare packed unsigned 32-bit integers in a and b for equality, and store the results in mask vector k.

_mm512_cmpeq_epu64_maskExperimentalavx512f

Compare packed unsigned 64-bit integers in a and b for equality, and store the results in mask vector k.

_mm512_cmpeq_pd_maskExperimentalavx512f

Compare packed double-precision (64-bit) floating-point elements in a and b for equality, and store the results in mask vector k.

_mm512_cmpeq_ps_maskExperimentalavx512f

Compare packed single-precision (32-bit) floating-point elements in a and b for equality, and store the results in mask vector k.

_mm512_cmpge_epi8_maskExperimentalavx512bw

Compare packed signed 8-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k.

_mm512_cmpge_epi16_maskExperimentalavx512bw

Compare packed signed 16-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k.

_mm512_cmpge_epi32_maskExperimentalavx512f

Compare packed signed 32-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k.

_mm512_cmpge_epi64_maskExperimentalavx512f

Compare packed signed 64-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k.

_mm512_cmpge_epu8_maskExperimentalavx512bw

Compare packed unsigned 8-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k.

_mm512_cmpge_epu16_maskExperimentalavx512bw

Compare packed unsigned 16-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k.

_mm512_cmpge_epu32_maskExperimentalavx512f

Compare packed unsigned 32-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k.

_mm512_cmpge_epu64_maskExperimentalavx512f

Compare packed unsigned 64-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k.

_mm512_cmpgt_epi8_maskExperimentalavx512bw

Compare packed signed 8-bit integers in a and b for greater-than, and store the results in mask vector k.

_mm512_cmpgt_epi16_maskExperimentalavx512bw

Compare packed signed 16-bit integers in a and b for greater-than, and store the results in mask vector k.

_mm512_cmpgt_epi32_maskExperimentalavx512f

Compare packed signed 32-bit integers in a and b for greater-than, and store the results in mask vector k.

_mm512_cmpgt_epi64_maskExperimentalavx512f

Compare packed signed 64-bit integers in a and b for greater-than, and store the results in mask vector k.

_mm512_cmpgt_epu8_maskExperimentalavx512bw

Compare packed unsigned 8-bit integers in a and b for greater-than, and store the results in mask vector k.

_mm512_cmpgt_epu16_maskExperimentalavx512bw

Compare packed unsigned 16-bit integers in a and b for greater-than, and store the results in mask vector k.

_mm512_cmpgt_epu32_maskExperimentalavx512f

Compare packed unsigned 32-bit integers in a and b for greater-than, and store the results in mask vector k.

_mm512_cmpgt_epu64_maskExperimentalavx512f

Compare packed unsigned 64-bit integers in a and b for greater-than, and store the results in mask vector k.

_mm512_cmple_epi8_maskExperimentalavx512bw

Compare packed signed 8-bit integers in a and b for less-than-or-equal, and store the results in mask vector k.

_mm512_cmple_epi16_maskExperimentalavx512bw

Compare packed signed 16-bit integers in a and b for less-than-or-equal, and store the results in mask vector k.

_mm512_cmple_epi32_maskExperimentalavx512f

Compare packed signed 32-bit integers in a and b for less-than-or-equal, and store the results in mask vector k.

_mm512_cmple_epi64_maskExperimentalavx512f

Compare packed signed 64-bit integers in a and b for less-than-or-equal, and store the results in mask vector k.

_mm512_cmple_epu8_maskExperimentalavx512bw

Compare packed unsigned 8-bit integers in a and b for less-than-or-equal, and store the results in mask vector k.

_mm512_cmple_epu16_maskExperimentalavx512bw

Compare packed unsigned 16-bit integers in a and b for less-than-or-equal, and store the results in mask vector k.

_mm512_cmple_epu32_maskExperimentalavx512f

Compare packed unsigned 32-bit integers in a and b for less-than-or-equal, and store the results in mask vector k.

_mm512_cmple_epu64_maskExperimentalavx512f

Compare packed unsigned 64-bit integers in a and b for less-than-or-equal, and store the results in mask vector k.

_mm512_cmple_pd_maskExperimentalavx512f

Compare packed double-precision (64-bit) floating-point elements in a and b for less-than-or-equal, and store the results in mask vector k.

_mm512_cmple_ps_maskExperimentalavx512f

Compare packed single-precision (32-bit) floating-point elements in a and b for less-than-or-equal, and store the results in mask vector k.

_mm512_cmplt_epi8_maskExperimentalavx512bw

Compare packed signed 8-bit integers in a and b for less-than, and store the results in mask vector k.

_mm512_cmplt_epi16_maskExperimentalavx512bw

Compare packed signed 16-bit integers in a and b for less-than, and store the results in mask vector k.

_mm512_cmplt_epi32_maskExperimentalavx512f

Compare packed signed 32-bit integers in a and b for less-than, and store the results in mask vector k.

_mm512_cmplt_epi64_maskExperimentalavx512f

Compare packed signed 64-bit integers in a and b for less-than, and store the results in mask vector k.

_mm512_cmplt_epu8_maskExperimentalavx512bw

Compare packed unsigned 8-bit integers in a and b for less-than, and store the results in mask vector k.

_mm512_cmplt_epu16_maskExperimentalavx512bw

Compare packed unsigned 16-bit integers in a and b for less-than, and store the results in mask vector k.

_mm512_cmplt_epu32_maskExperimentalavx512f

Compare packed unsigned 32-bit integers in a and b for less-than, and store the results in mask vector k.

_mm512_cmplt_epu64_maskExperimentalavx512f

Compare packed unsigned 64-bit integers in a and b for less-than, and store the results in mask vector k.

_mm512_cmplt_pd_maskExperimentalavx512f

Compare packed double-precision (64-bit) floating-point elements in a and b for less-than, and store the results in mask vector k.

_mm512_cmplt_ps_maskExperimentalavx512f

Compare packed single-precision (32-bit) floating-point elements in a and b for less-than, and store the results in mask vector k.

_mm512_cmpneq_epi8_maskExperimentalavx512bw

Compare packed signed 8-bit integers in a and b for not-equal, and store the results in mask vector k.

_mm512_cmpneq_epi16_maskExperimentalavx512bw

Compare packed signed 16-bit integers in a and b for not-equal, and store the results in mask vector k.

_mm512_cmpneq_epi32_maskExperimentalavx512f

Compare packed 32-bit integers in a and b for not-equal, and store the results in mask vector k.

_mm512_cmpneq_epi64_maskExperimentalavx512f

Compare packed signed 64-bit integers in a and b for not-equal, and store the results in mask vector k.

_mm512_cmpneq_epu8_maskExperimentalavx512bw

Compare packed unsigned 8-bit integers in a and b for not-equal, and store the results in mask vector k.

_mm512_cmpneq_epu16_maskExperimentalavx512bw

Compare packed unsigned 16-bit integers in a and b for not-equal, and store the results in mask vector k.

_mm512_cmpneq_epu32_maskExperimentalavx512f

Compare packed unsigned 32-bit integers in a and b for not-equal, and store the results in mask vector k.

_mm512_cmpneq_epu64_maskExperimentalavx512f

Compare packed unsigned 64-bit integers in a and b for not-equal, and store the results in mask vector k.

_mm512_cmpneq_pd_maskExperimentalavx512f

Compare packed double-precision (64-bit) floating-point elements in a and b for not-equal, and store the results in mask vector k.

_mm512_cmpneq_ps_maskExperimentalavx512f

Compare packed single-precision (32-bit) floating-point elements in a and b for not-equal, and store the results in mask vector k.

_mm512_cmpnle_pd_maskExperimentalavx512f

Compare packed double-precision (64-bit) floating-point elements in a and b for not-less-than-or-equal, and store the results in mask vector k.

_mm512_cmpnle_ps_maskExperimentalavx512f

Compare packed single-precision (32-bit) floating-point elements in a and b for not-less-than-or-equal, and store the results in mask vector k.

_mm512_cmpnlt_pd_maskExperimentalavx512f

Compare packed double-precision (64-bit) floating-point elements in a and b for not-less-than, and store the results in mask vector k.

_mm512_cmpnlt_ps_maskExperimentalavx512f

Compare packed single-precision (32-bit) floating-point elements in a and b for not-less-than, and store the results in mask vector k.

_mm512_cmpord_pd_maskExperimentalavx512f

Compare packed double-precision (64-bit) floating-point elements in a and b to see if neither is NaN, and store the results in mask vector k.

_mm512_cmpord_ps_maskExperimentalavx512f

Compare packed single-precision (32-bit) floating-point elements in a and b to see if neither is NaN, and store the results in mask vector k.

_mm512_cmpunord_pd_maskExperimentalavx512f

Compare packed double-precision (64-bit) floating-point elements in a and b to see if either is NaN, and store the results in mask vector k.

_mm512_cmpunord_ps_maskExperimentalavx512f

Compare packed single-precision (32-bit) floating-point elements in a and b to see if either is NaN, and store the results in mask vector k.

_mm512_conflict_epi32Experimentalavx512cd

Test each 32-bit element of a for equality with all other elements in a closer to the least significant bit. Each element’s comparison forms a zero extended bit vector in dst.

_mm512_conflict_epi64Experimentalavx512cd

Test each 64-bit element of a for equality with all other elements in a closer to the least significant bit. Each element’s comparison forms a zero extended bit vector in dst.

_mm512_cvt_roundepi32_psExperimentalavx512f

Convert packed signed 32-bit integers in a to packed single-precision (32-bit) floating-point elements, and store the results in dst.

_mm512_cvt_roundepu32_psExperimentalavx512f

Convert packed unsigned 32-bit integers in a to packed single-precision (32-bit) floating-point elements, and store the results in dst.

_mm512_cvt_roundpd_epi32Experimentalavx512f

Convert packed double-precision (64-bit) floating-point elements in a to packed 32-bit integers, and store the results in dst.

_mm512_cvt_roundpd_epu32Experimentalavx512f

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers, and store the results in dst.

_mm512_cvt_roundpd_psExperimentalavx512f

Convert packed double-precision (64-bit) floating-point elements in a to packed single-precision (32-bit) floating-point elements, and store the results in dst.

_mm512_cvt_roundph_psExperimentalavx512f

Convert packed half-precision (16-bit) floating-point elements in a to packed single-precision (32-bit) floating-point elements, and store the results in dst.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.

_mm512_cvt_roundps_epi32Experimentalavx512f

Convert packed single-precision (32-bit) floating-point elements in a to packed 32-bit integers, and store the results in dst.

_mm512_cvt_roundps_epu32Experimentalavx512f

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers, and store the results in dst.

_mm512_cvt_roundps_pdExperimentalavx512f

Convert packed single-precision (32-bit) floating-point elements in a to packed double-precision (64-bit) floating-point elements, and store the results in dst.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.

_mm512_cvt_roundps_phExperimentalavx512f

Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit) floating-point elements, and store the results in dst.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.

_mm512_cvtepi8_epi16Experimentalavx512bw

Sign extend packed 8-bit integers in a to packed 16-bit integers, and store the results in dst.

_mm512_cvtepi8_epi32Experimentalavx512f

Sign extend packed 8-bit integers in a to packed 32-bit integers, and store the results in dst.

_mm512_cvtepi8_epi64Experimentalavx512f

Sign extend packed 8-bit integers in the low 8 bytes of a to packed 64-bit integers, and store the results in dst.

_mm512_cvtepi16_epi8Experimentalavx512bw

Convert packed 16-bit integers in a to packed 8-bit integers with truncation, and store the results in dst.

_mm512_cvtepi16_epi32Experimentalavx512f

Sign extend packed 16-bit integers in a to packed 32-bit integers, and store the results in dst.

_mm512_cvtepi16_epi64Experimentalavx512f

Sign extend packed 16-bit integers in a to packed 64-bit integers, and store the results in dst.

_mm512_cvtepi32_epi8Experimentalavx512f

Convert packed 32-bit integers in a to packed 8-bit integers with truncation, and store the results in dst.

_mm512_cvtepi32_epi16Experimentalavx512f

Convert packed 32-bit integers in a to packed 16-bit integers with truncation, and store the results in dst.

_mm512_cvtepi32_epi64Experimentalavx512f

Sign extend packed 32-bit integers in a to packed 64-bit integers, and store the results in dst.

_mm512_cvtepi32_pdExperimentalavx512f

Convert packed signed 32-bit integers in a to packed double-precision (64-bit) floating-point elements, and store the results in dst.

_mm512_cvtepi32_psExperimentalavx512f

Convert packed signed 32-bit integers in a to packed single-precision (32-bit) floating-point elements, and store the results in dst.

_mm512_cvtepi32lo_pdExperimentalavx512f

Performs element-by-element conversion of the lower half of packed 32-bit integer elements in v2 to packed double-precision (64-bit) floating-point elements, storing the results in dst.

_mm512_cvtepi64_epi8Experimentalavx512f

Convert packed 64-bit integers in a to packed 8-bit integers with truncation, and store the results in dst.

_mm512_cvtepi64_epi16Experimentalavx512f

Convert packed 64-bit integers in a to packed 16-bit integers with truncation, and store the results in dst.

_mm512_cvtepi64_epi32Experimentalavx512f

Convert packed 64-bit integers in a to packed 32-bit integers with truncation, and store the results in dst.

_mm512_cvtepu8_epi16Experimentalavx512bw

Zero extend packed unsigned 8-bit integers in a to packed 16-bit integers, and store the results in dst.

_mm512_cvtepu8_epi32Experimentalavx512f

Zero extend packed unsigned 8-bit integers in a to packed 32-bit integers, and store the results in dst.

_mm512_cvtepu8_epi64Experimentalavx512f

Zero extend packed unsigned 8-bit integers in the low 8 byte sof a to packed 64-bit integers, and store the results in dst.

_mm512_cvtepu16_epi32Experimentalavx512f

Zero extend packed unsigned 16-bit integers in a to packed 32-bit integers, and store the results in dst.

_mm512_cvtepu16_epi64Experimentalavx512f

Zero extend packed unsigned 16-bit integers in a to packed 64-bit integers, and store the results in dst.

_mm512_cvtepu32_epi64Experimentalavx512f

Zero extend packed unsigned 32-bit integers in a to packed 64-bit integers, and store the results in dst.

_mm512_cvtepu32_pdExperimentalavx512f

Convert packed unsigned 32-bit integers in a to packed double-precision (64-bit) floating-point elements, and store the results in dst.

_mm512_cvtepu32_psExperimentalavx512f

Convert packed unsigned 32-bit integers in a to packed single-precision (32-bit) floating-point elements, and store the results in dst.

_mm512_cvtepu32lo_pdExperimentalavx512f

Performs element-by-element conversion of the lower half of packed 32-bit unsigned integer elements in v2 to packed double-precision (64-bit) floating-point elements, storing the results in dst.

_mm512_cvtne2ps_pbhExperimentalavx512bf16,avx512f

Convert packed single-precision (32-bit) floating-point elements in two 512-bit vectors a and b to packed BF16 (16-bit) floating-point elements, and store the results in a
512-bit wide vector. Intel’s documentation

_mm512_cvtneps_pbhExperimentalavx512bf16,avx512f

Convert packed single-precision (32-bit) floating-point elements in a to packed BF16 (16-bit) floating-point elements, and store the results in dst. Intel’s documentation

_mm512_cvtpd_epi32Experimentalavx512f

Convert packed double-precision (64-bit) floating-point elements in a to packed 32-bit integers, and store the results in dst.

_mm512_cvtpd_epu32Experimentalavx512f

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers, and store the results in dst.

_mm512_cvtpd_psExperimentalavx512f

Convert packed double-precision (64-bit) floating-point elements in a to packed single-precision (32-bit) floating-point elements, and store the results in dst.

_mm512_cvtpd_psloExperimentalavx512f

Performs an element-by-element conversion of packed double-precision (64-bit) floating-point elements in v2 to single-precision (32-bit) floating-point elements and stores them in dst. The elements are stored in the lower half of the results vector, while the remaining upper half locations are set to 0.

_mm512_cvtph_psExperimentalavx512f

Convert packed half-precision (16-bit) floating-point elements in a to packed single-precision (32-bit) floating-point elements, and store the results in dst.

_mm512_cvtps_epi32Experimentalavx512f

Convert packed single-precision (32-bit) floating-point elements in a to packed 32-bit integers, and store the results in dst.

_mm512_cvtps_epu32Experimentalavx512f

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers, and store the results in dst.

_mm512_cvtps_pdExperimentalavx512f

Convert packed single-precision (32-bit) floating-point elements in a to packed double-precision (64-bit) floating-point elements, and store the results in dst.

_mm512_cvtps_phExperimentalavx512f

Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit) floating-point elements, and store the results in dst.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.

_mm512_cvtpslo_pdExperimentalavx512f

Performs element-by-element conversion of the lower half of packed single-precision (32-bit) floating-point elements in v2 to packed double-precision (64-bit) floating-point elements, storing the results in dst.

_mm512_cvtsepi16_epi8Experimentalavx512bw

Convert packed signed 16-bit integers in a to packed 8-bit integers with signed saturation, and store the results in dst.

_mm512_cvtsepi32_epi8Experimentalavx512f

Convert packed signed 32-bit integers in a to packed 8-bit integers with signed saturation, and store the results in dst.

_mm512_cvtsepi32_epi16Experimentalavx512f

Convert packed signed 32-bit integers in a to packed 16-bit integers with signed saturation, and store the results in dst.

_mm512_cvtsepi64_epi8Experimentalavx512f

Convert packed signed 64-bit integers in a to packed 8-bit integers with signed saturation, and store the results in dst.

_mm512_cvtsepi64_epi16Experimentalavx512f

Convert packed signed 64-bit integers in a to packed 16-bit integers with signed saturation, and store the results in dst.

_mm512_cvtsepi64_epi32Experimentalavx512f

Convert packed signed 64-bit integers in a to packed 32-bit integers with signed saturation, and store the results in dst.

_mm512_cvtsi512_si32Experimentalavx512f

Copy the lower 32-bit integer in a to dst.

_mm512_cvtt_roundpd_epi32Experimentalavx512f

Convert packed double-precision (64-bit) floating-point elements in a to packed 32-bit integers with truncation, and store the results in dst.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.

_mm512_cvtt_roundpd_epu32Experimentalavx512f

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers with truncation, and store the results in dst.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.

_mm512_cvtt_roundps_epi32Experimentalavx512f

Convert packed single-precision (32-bit) floating-point elements in a to packed 32-bit integers with truncation, and store the results in dst.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.

_mm512_cvtt_roundps_epu32Experimentalavx512f

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers with truncation, and store the results in dst.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.

_mm512_cvttpd_epi32Experimentalavx512f

Convert packed double-precision (64-bit) floating-point elements in a to packed 32-bit integers with truncation, and store the results in dst.

_mm512_cvttpd_epu32Experimentalavx512f

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers with truncation, and store the results in dst.

_mm512_cvttps_epi32Experimentalavx512f

Convert packed single-precision (32-bit) floating-point elements in a to packed 32-bit integers with truncation, and store the results in dst.

_mm512_cvttps_epu32Experimentalavx512f

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers with truncation, and store the results in dst.

_mm512_cvtusepi16_epi8Experimentalavx512bw

Convert packed unsigned 16-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and store the results in dst.

_mm512_cvtusepi32_epi8Experimentalavx512f

Convert packed unsigned 32-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and store the results in dst.

_mm512_cvtusepi32_epi16Experimentalavx512f

Convert packed unsigned 32-bit integers in a to packed unsigned 16-bit integers with unsigned saturation, and store the results in dst.

_mm512_cvtusepi64_epi8Experimentalavx512f

Convert packed unsigned 64-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and store the results in dst.

_mm512_cvtusepi64_epi16Experimentalavx512f

Convert packed unsigned 64-bit integers in a to packed unsigned 16-bit integers with unsigned saturation, and store the results in dst.

_mm512_cvtusepi64_epi32Experimentalavx512f

Convert packed unsigned 64-bit integers in a to packed unsigned 32-bit integers with unsigned saturation, and store the results in dst.

_mm512_dbsad_epu8Experimentalavx512bw

Compute the sum of absolute differences (SADs) of quadruplets of unsigned 8-bit integers in a compared to those in b, and store the 16-bit results in dst. Four SADs are performed on four 8-bit quadruplets for each 64-bit lane. The first two SADs use the lower 8-bit quadruplet of the lane from a, and the last two SADs use the uppper 8-bit quadruplet of the lane from a. Quadruplets from b are selected from within 128-bit lanes according to the control in imm8, and each SAD in each 64-bit lane uses the selected quadruplet at 8-bit offsets.

_mm512_div_pdExperimentalavx512f

Divide packed double-precision (64-bit) floating-point elements in a by packed elements in b, and store the results in dst.

_mm512_div_psExperimentalavx512f

Divide packed single-precision (32-bit) floating-point elements in a by packed elements in b, and store the results in dst.

_mm512_div_round_pdExperimentalavx512f

Divide packed double-precision (64-bit) floating-point elements in a by packed elements in b, =and store the results in dst.

_mm512_div_round_psExperimentalavx512f

Divide packed single-precision (32-bit) floating-point elements in a by packed elements in b, and store the results in dst.

_mm512_dpbf16_psExperimentalavx512bf16,avx512f

Compute dot-product of BF16 (16-bit) floating-point pairs in a and b, accumulating the intermediate single-precision (32-bit) floating-point elements with elements in src, and store the results in dst.Compute dot-product of BF16 (16-bit) floating-point pairs in a and b, accumulating the intermediate single-precision (32-bit) floating-point elements with elements in src, and store the results in dst. Intel’s documentation

_mm512_dpbusd_epi32Experimentalavx512vnni

Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in a with corresponding signed 8-bit integers in b, producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in src, and store the packed 32-bit results in dst.

_mm512_dpbusds_epi32Experimentalavx512vnni

Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in a with corresponding signed 8-bit integers in b, producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in src using signed saturation, and store the packed 32-bit results in dst.

_mm512_dpwssd_epi32Experimentalavx512vnni

Multiply groups of 2 adjacent pairs of signed 16-bit integers in a with corresponding 16-bit integers in b, producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in src, and store the packed 32-bit results in dst.

_mm512_dpwssds_epi32Experimentalavx512vnni

Multiply groups of 2 adjacent pairs of signed 16-bit integers in a with corresponding 16-bit integers in b, producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in src using signed saturation, and store the packed 32-bit results in dst.

_mm512_extractf32x4_psExperimentalavx512f

Extract 128 bits (composed of 4 packed single-precision (32-bit) floating-point elements) from a, selected with imm8, and store the result in dst.

_mm512_extractf64x4_pdExperimentalavx512f

Extract 256 bits (composed of 4 packed double-precision (64-bit) floating-point elements) from a, selected with imm8, and store the result in dst.

_mm512_extracti32x4_epi32Experimentalavx512f

Extract 128 bits (composed of 4 packed 32-bit integers) from a, selected with IMM2, and store the result in dst.

_mm512_extracti64x4_epi64Experimentalavx512f

Extract 256 bits (composed of 4 packed 64-bit integers) from a, selected with IMM1, and store the result in dst.

_mm512_fixupimm_pdExperimentalavx512f

Fix up packed double-precision (64-bit) floating-point elements in a and b using packed 64-bit integers in c, and store the results in dst. imm8 is used to set the required flags reporting.

_mm512_fixupimm_psExperimentalavx512f

Fix up packed single-precision (32-bit) floating-point elements in a and b using packed 32-bit integers in c, and store the results in dst. imm8 is used to set the required flags reporting.

_mm512_fixupimm_round_pdExperimentalavx512f

Fix up packed double-precision (64-bit) floating-point elements in a and b using packed 64-bit integers in c, and store the results in dst. imm8 is used to set the required flags reporting.

_mm512_fixupimm_round_psExperimentalavx512f

Fix up packed single-precision (32-bit) floating-point elements in a and b using packed 32-bit integers in c, and store the results in dst. imm8 is used to set the required flags reporting.

_mm512_fmadd_pdExperimentalavx512f

Multiply packed double-precision (64-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst.

_mm512_fmadd_psExperimentalavx512f

Multiply packed single-precision (32-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst.

_mm512_fmadd_round_pdExperimentalavx512f

Multiply packed double-precision (64-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst.

_mm512_fmadd_round_psExperimentalavx512f

Multiply packed single-precision (32-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst.

_mm512_fmaddsub_pdExperimentalavx512f

Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst.

_mm512_fmaddsub_psExperimentalavx512f

Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst.

_mm512_fmaddsub_round_pdExperimentalavx512f

Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst.

_mm512_fmaddsub_round_psExperimentalavx512f

Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst.

_mm512_fmsub_pdExperimentalavx512f

Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst.

_mm512_fmsub_psExperimentalavx512f

Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst.

_mm512_fmsub_round_pdExperimentalavx512f

Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst.

_mm512_fmsub_round_psExperimentalavx512f

Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst.

_mm512_fmsubadd_pdExperimentalavx512f

Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively subtract and add packed elements in c from/to the intermediate result, and store the results in dst.

_mm512_fmsubadd_psExperimentalavx512f

Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively subtract and add packed elements in c from/to the intermediate result, and store the results in dst.

_mm512_fmsubadd_round_pdExperimentalavx512f

Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively subtract and add packed elements in c from/to the intermediate result, and store the results in dst.

_mm512_fmsubadd_round_psExperimentalavx512f

Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively subtract and add packed elements in c from/to the intermediate result, and store the results in dst.

_mm512_fnmadd_pdExperimentalavx512f

Multiply packed double-precision (64-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst.

_mm512_fnmadd_psExperimentalavx512f

Multiply packed single-precision (32-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst.

_mm512_fnmadd_round_pdExperimentalavx512f

Multiply packed double-precision (64-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst.

_mm512_fnmadd_round_psExperimentalavx512f

Multiply packed single-precision (32-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst.

_mm512_fnmsub_pdExperimentalavx512f

Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst.

_mm512_fnmsub_psExperimentalavx512f

Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst.

_mm512_fnmsub_round_pdExperimentalavx512f

Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst.

_mm512_fnmsub_round_psExperimentalavx512f

Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst.

_mm512_getexp_pdExperimentalavx512f

Convert the exponent of each packed double-precision (64-bit) floating-point element in a to a double-precision (64-bit) floating-point number representing the integer exponent, and store the results in dst. This intrinsic essentially calculates floor(log2(x)) for each element.

_mm512_getexp_psExperimentalavx512f

Convert the exponent of each packed single-precision (32-bit) floating-point element in a to a single-precision (32-bit) floating-point number representing the integer exponent, and store the results in dst. This intrinsic essentially calculates floor(log2(x)) for each element.

_mm512_getexp_round_pdExperimentalavx512f

Convert the exponent of each packed double-precision (64-bit) floating-point element in a to a double-precision (64-bit) floating-point number representing the integer exponent, and store the results in dst. This intrinsic essentially calculates floor(log2(x)) for each element.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.

_mm512_getexp_round_psExperimentalavx512f

Convert the exponent of each packed single-precision (32-bit) floating-point element in a to a single-precision (32-bit) floating-point number representing the integer exponent, and store the results in dst. This intrinsic essentially calculates floor(log2(x)) for each element.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.

_mm512_getmant_pdExperimentalavx512f

Normalize the mantissas of packed double-precision (64-bit) floating-point elements in a, and store the results in dst. This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1

_mm512_getmant_psExperimentalavx512f

Normalize the mantissas of packed single-precision (32-bit) floating-point elements in a, and store the results in dst. This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign. The mantissa is normalized to the interval specified by interv, which can take the following values: _MM_MANT_NORM_1_2 // interval [1, 2) _MM_MANT_NORM_p5_2 // interval [0.5, 2) _MM_MANT_NORM_p5_1 // interval [0.5, 1) _MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5) The sign is determined by sc which can take the following values: _MM_MANT_SIGN_src // sign = sign(src) _MM_MANT_SIGN_zero // sign = 0 _MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1

_mm512_getmant_round_pdExperimentalavx512f

Normalize the mantissas of packed double-precision (64-bit) floating-point elements in a, and store the results in dst. This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.

_mm512_getmant_round_psExperimentalavx512f

Normalize the mantissas of packed single-precision (32-bit) floating-point elements in a, and store the results in dst. This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.

_mm512_gf2p8affine_epi64_epi8Experimentalavx512gfni,avx512bw,avx512f

Performs an affine transformation on the packed bytes in x. That is computes a*x+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix and b being a constant 8-bit immediate value. Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a.

_mm512_gf2p8affineinv_epi64_epi8Experimentalavx512gfni,avx512bw,avx512f

Performs an affine transformation on the inverted packed bytes in x. That is computes a*inv(x)+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix and b being a constant 8-bit immediate value. The inverse of a byte is defined with respect to the reduction polynomial x^8+x^4+x^3+x+1. The inverse of 0 is 0. Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a.

_mm512_gf2p8mul_epi8Experimentalavx512gfni,avx512bw,avx512f

Performs a multiplication in GF(2^8) on the packed bytes. The field is in polynomial representation with the reduction polynomial x^8 + x^4 + x^3 + x + 1.

_mm512_i32gather_epi32Experimentalavx512f

Gather 32-bit integers from memory using 32-bit indices. 32-bit elements are loaded from addresses starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in scale). Gathered elements are merged into dst. scale should be 1, 2, 4 or 8.

_mm512_i32gather_epi64Experimentalavx512f

Gather 64-bit integers from memory using 32-bit indices. 64-bit elements are loaded from addresses starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in scale). Gathered elements are merged into dst. scale should be 1, 2, 4 or 8.

_mm512_i32gather_pdExperimentalavx512f

Gather double-precision (64-bit) floating-point elements from memory using 32-bit indices. 64-bit elements are loaded from addresses starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in scale). Gathered elements are merged into dst. scale should be 1, 2, 4 or 8.

_mm512_i32gather_psExperimentalavx512f

Gather single-precision (32-bit) floating-point elements from memory using 32-bit indices. 32-bit elements are loaded from addresses starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in scale). Gathered elements are merged into dst. scale should be 1, 2, 4 or 8.

_mm512_i32scatter_epi32Experimentalavx512f

Scatter 32-bit integers from a into memory using 32-bit indices. 32-bit elements are stored at addresses starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in scale). scale should be 1, 2, 4 or 8.

_mm512_i32scatter_epi64Experimentalavx512f

Scatter 64-bit integers from a into memory using 32-bit indices. 64-bit elements are stored at addresses starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in scale). scale should be 1, 2, 4 or 8.

_mm512_i32scatter_pdExperimentalavx512f

Scatter double-precision (64-bit) floating-point elements from a into memory using 32-bit indices. 64-bit elements are stored at addresses starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in scale). scale should be 1, 2, 4 or 8.

_mm512_i32scatter_psExperimentalavx512f

Scatter single-precision (32-bit) floating-point elements from a into memory using 32-bit indices. 32-bit elements are stored at addresses starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in scale). scale should be 1, 2, 4 or 8.

_mm512_i64gather_epi32Experimentalavx512f

Gather 32-bit integers from memory using 64-bit indices. 32-bit elements are loaded from addresses starting at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in scale). Gathered elements are merged into dst. scale should be 1, 2, 4 or 8.

_mm512_i64gather_epi64Experimentalavx512f

Gather 64-bit integers from memory using 64-bit indices. 64-bit elements are loaded from addresses starting at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in scale). Gathered elements are merged into dst. scale should be 1, 2, 4 or 8.

_mm512_i64gather_pdExperimentalavx512f

Gather double-precision (64-bit) floating-point elements from memory using 64-bit indices. 64-bit elements are loaded from addresses starting at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in scale). Gathered elements are merged into dst. scale should be 1, 2, 4 or 8.

_mm512_i64gather_psExperimentalavx512f

Gather single-precision (32-bit) floating-point elements from memory using 64-bit indices. 32-bit elements are loaded from addresses starting at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in scale). Gathered elements are merged into dst. scale should be 1, 2, 4 or 8.

_mm512_i64scatter_epi32Experimentalavx512f

Scatter 32-bit integers from a into memory using 64-bit indices. 32-bit elements are stored at addresses starting at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in scale). scale should be 1, 2, 4 or 8.

_mm512_i64scatter_epi64Experimentalavx512f

Scatter 64-bit integers from a into memory using 64-bit indices. 64-bit elements are stored at addresses starting at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in scale). scale should be 1, 2, 4 or 8.

_mm512_i64scatter_pdExperimentalavx512f

Scatter double-precision (64-bit) floating-point elements from a into memory using 64-bit indices. 64-bit elements are stored at addresses starting at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in scale). scale should be 1, 2, 4 or 8.

_mm512_i64scatter_psExperimentalavx512f

Scatter single-precision (32-bit) floating-point elements from a into memory using 64-bit indices. 32-bit elements are stored at addresses starting at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in scale) subject to mask k (elements are not stored when the corresponding mask bit is not set). scale should be 1, 2, 4 or 8.

_mm512_insertf32x4Experimentalavx512f

Copy a to dst, then insert 128 bits (composed of 4 packed single-precision (32-bit) floating-point elements) from b into dst at the location specified by imm8.

_mm512_insertf64x4Experimentalavx512f

Copy a to dst, then insert 256 bits (composed of 4 packed double-precision (64-bit) floating-point elements) from b into dst at the location specified by imm8.

_mm512_inserti32x4Experimentalavx512f

Copy a to dst, then insert 128 bits (composed of 4 packed 32-bit integers) from b into dst at the location specified by imm8.

_mm512_inserti64x4Experimentalavx512f

Copy a to dst, then insert 256 bits (composed of 4 packed 64-bit integers) from b into dst at the location specified by imm8.

_mm512_int2maskExperimentalavx512f

Converts integer mask into bitmask, storing the result in dst.

_mm512_kandExperimentalavx512f

Compute the bitwise AND of 16-bit masks a and b, and store the result in k.

_mm512_kandnExperimentalavx512f

Compute the bitwise NOT of 16-bit masks a and then AND with b, and store the result in k.

_mm512_kmovExperimentalavx512f

Copy 16-bit mask a to k.

_mm512_knotExperimentalavx512f

Compute the bitwise NOT of 16-bit mask a, and store the result in k.

_mm512_korExperimentalavx512f

Compute the bitwise OR of 16-bit masks a and b, and store the result in k.

_mm512_kortestcExperimentalavx512f

Performs bitwise OR between k1 and k2, storing the result in dst. CF flag is set if dst consists of all 1’s.

_mm512_kunpackbExperimentalavx512f

Unpack and interleave 8 bits from masks a and b, and store the 16-bit result in k.

_mm512_kxnorExperimentalavx512f

Compute the bitwise XNOR of 16-bit masks a and b, and store the result in k.

_mm512_kxorExperimentalavx512f

Compute the bitwise XOR of 16-bit masks a and b, and store the result in k.

_mm512_load_epi32Experimentalavx512f

Load 512-bits (composed of 16 packed 32-bit integers) from memory into dst. mem_addr must be aligned on a 64-byte boundary or a general-protection exception may be generated.

_mm512_load_epi64Experimentalavx512f

Load 512-bits (composed of 8 packed 64-bit integers) from memory into dst. mem_addr must be aligned on a 64-byte boundary or a general-protection exception may be generated.

_mm512_load_pdExperimentalavx512f

Load 512-bits (composed of 8 packed double-precision (64-bit) floating-point elements) from memory into dst. mem_addr must be aligned on a 64-byte boundary or a general-protection exception may be generated.

_mm512_load_psExperimentalavx512f

Load 512-bits (composed of 16 packed single-precision (32-bit) floating-point elements) from memory into dst. mem_addr must be aligned on a 64-byte boundary or a general-protection exception may be generated.

_mm512_load_si512Experimentalavx512f

Load 512-bits of integer data from memory into dst. mem_addr must be aligned on a 64-byte boundary or a general-protection exception may be generated.

_mm512_loadu_epi8Experimentalavx512bw

Load 512-bits (composed of 64 packed 8-bit integers) from memory into dst. mem_addr does not need to be aligned on any particular boundary.

_mm512_loadu_epi16Experimentalavx512bw

Load 512-bits (composed of 32 packed 16-bit integers) from memory into dst. mem_addr does not need to be aligned on any particular boundary.

_mm512_loadu_epi32Experimentalavx512f

Load 512-bits (composed of 16 packed 32-bit integers) from memory into dst. mem_addr does not need to be aligned on any particular boundary.

_mm512_loadu_epi64Experimentalavx512f

Load 512-bits (composed of 8 packed 64-bit integers) from memory into dst. mem_addr does not need to be aligned on any particular boundary.

_mm512_loadu_pdExperimentalavx512f

Loads 512-bits (composed of 8 packed double-precision (64-bit) floating-point elements) from memory into result. mem_addr does not need to be aligned on any particular boundary.

_mm512_loadu_psExperimentalavx512f

Loads 512-bits (composed of 16 packed single-precision (32-bit) floating-point elements) from memory into result. mem_addr does not need to be aligned on any particular boundary.

_mm512_loadu_si512Experimentalavx512f

Load 512-bits of integer data from memory into dst. mem_addr does not need to be aligned on any particular boundary.

_mm512_lzcnt_epi32Experimentalavx512cd

Counts the number of leading zero bits in each packed 32-bit integer in a, and store the results in dst.

_mm512_lzcnt_epi64Experimentalavx512cd

Counts the number of leading zero bits in each packed 64-bit integer in a, and store the results in dst.

_mm512_madd52hi_epu64Experimentalavx512ifma

Multiply packed unsigned 52-bit integers in each 64-bit element of b and c to form a 104-bit intermediate result. Add the high 52-bit unsigned integer from the intermediate result with the corresponding unsigned 64-bit integer in a, and store the results in dst.

_mm512_madd52lo_epu64Experimentalavx512ifma

Multiply packed unsigned 52-bit integers in each 64-bit element of b and c to form a 104-bit intermediate result. Add the low 52-bit unsigned integer from the intermediate result with the corresponding unsigned 64-bit integer in a, and store the results in dst.

_mm512_madd_epi16Experimentalavx512bw

Multiply packed signed 16-bit integers in a and b, producing intermediate signed 32-bit integers. Horizontally add adjacent pairs of intermediate 32-bit integers, and pack the results in dst.

_mm512_maddubs_epi16Experimentalavx512bw

Vertically multiply each unsigned 8-bit integer from a with the corresponding signed 8-bit integer from b, producing intermediate signed 16-bit integers. Horizontally add adjacent pairs of intermediate signed 16-bit integers, and pack the saturated results in dst.

_mm512_mask2_permutex2var_epi8Experimentalavx512vbmi

Shuffle 8-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm512_mask2_permutex2var_epi16Experimentalavx512bw

Shuffle 16-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from idx when the corresponding mask bit is not set).

_mm512_mask2_permutex2var_epi32Experimentalavx512f

Shuffle 32-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from idx when the corresponding mask bit is not set).

_mm512_mask2_permutex2var_epi64Experimentalavx512f

Shuffle 64-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from idx when the corresponding mask bit is not set).

_mm512_mask2_permutex2var_pdExperimentalavx512f

Shuffle double-precision (64-bit) floating-point elements in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from idx when the corresponding mask bit is not set)

_mm512_mask2_permutex2var_psExperimentalavx512f

Shuffle single-precision (32-bit) floating-point elements in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from idx when the corresponding mask bit is not set).

_mm512_mask2intExperimentalavx512f

Converts bit mask k1 into an integer value, storing the results in dst.

_mm512_mask3_fmadd_pdExperimentalavx512f

Multiply packed double-precision (64-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm512_mask3_fmadd_psExperimentalavx512f

Multiply packed single-precision (32-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm512_mask3_fmadd_round_pdExperimentalavx512f

Multiply packed double-precision (64-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm512_mask3_fmadd_round_psExperimentalavx512f

Multiply packed single-precision (32-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm512_mask3_fmaddsub_pdExperimentalavx512f

Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm512_mask3_fmaddsub_psExperimentalavx512f

Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm512_mask3_fmaddsub_round_pdExperimentalavx512f

Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm512_mask3_fmaddsub_round_psExperimentalavx512f

Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm512_mask3_fmsub_pdExperimentalavx512f

Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm512_mask3_fmsub_psExperimentalavx512f

Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm512_mask3_fmsub_round_pdExperimentalavx512f

Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm512_mask3_fmsub_round_psExperimentalavx512f

Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm512_mask3_fmsubadd_pdExperimentalavx512f

Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively subtract and add packed elements in c from/to the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm512_mask3_fmsubadd_psExperimentalavx512f

Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively subtract and add packed elements in c from/to the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm512_mask3_fmsubadd_round_pdExperimentalavx512f

Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively subtract and add packed elements in c from/to the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm512_mask3_fmsubadd_round_psExperimentalavx512f

Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively subtract and add packed elements in c from/to the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm512_mask3_fnmadd_pdExperimentalavx512f

Multiply packed double-precision (64-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm512_mask3_fnmadd_psExperimentalavx512f

Multiply packed single-precision (32-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm512_mask3_fnmadd_round_pdExperimentalavx512f

Multiply packed double-precision (64-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm512_mask3_fnmadd_round_psExperimentalavx512f

Multiply packed single-precision (32-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm512_mask3_fnmsub_pdExperimentalavx512f

Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm512_mask3_fnmsub_psExperimentalavx512f

Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm512_mask3_fnmsub_round_pdExperimentalavx512f

Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm512_mask3_fnmsub_round_psExperimentalavx512f

Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm512_mask_abs_epi8Experimentalavx512bw

Compute the absolute value of packed signed 8-bit integers in a, and store the unsigned results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_abs_epi16Experimentalavx512bw

Compute the absolute value of packed signed 16-bit integers in a, and store the unsigned results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_abs_epi32Experimentalavx512f

Computes the absolute value of packed 32-bit integers in a, and store the unsigned results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_abs_epi64Experimentalavx512f

Compute the absolute value of packed signed 64-bit integers in a, and store the unsigned results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_abs_pdExperimentalavx512f

Finds the absolute value of each packed double-precision (64-bit) floating-point element in v2, storing the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_abs_psExperimentalavx512f

Finds the absolute value of each packed single-precision (32-bit) floating-point element in v2, storing the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_add_epi8Experimentalavx512bw

Add packed 8-bit integers in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_add_epi16Experimentalavx512bw

Add packed 16-bit integers in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_add_epi32Experimentalavx512f

Add packed 32-bit integers in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_add_epi64Experimentalavx512f

Add packed 64-bit integers in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_add_pdExperimentalavx512f

Add packed double-precision (64-bit) floating-point elements in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_add_psExperimentalavx512f

Add packed single-precision (32-bit) floating-point elements in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_add_round_pdExperimentalavx512f

Add packed double-precision (64-bit) floating-point elements in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_add_round_psExperimentalavx512f

Add packed single-precision (32-bit) floating-point elements in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_adds_epi8Experimentalavx512bw

Add packed signed 8-bit integers in a and b using saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_adds_epi16Experimentalavx512bw

Add packed signed 16-bit integers in a and b using saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_adds_epu8Experimentalavx512bw

Add packed unsigned 8-bit integers in a and b using saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_adds_epu16Experimentalavx512bw

Add packed unsigned 16-bit integers in a and b using saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_alignr_epi8Experimentalavx512bw

Concatenate pairs of 16-byte blocks in a and b into a 32-byte temporary result, shift the result right by imm8 bytes, and store the low 16 bytes in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_alignr_epi32Experimentalavx512f

Concatenate a and b into a 128-byte immediate result, shift the result right by imm8 32-bit elements, and store the low 64 bytes (16 elements) in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_alignr_epi64Experimentalavx512f

Concatenate a and b into a 128-byte immediate result, shift the result right by imm8 64-bit elements, and store the low 64 bytes (8 elements) in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_and_epi32Experimentalavx512f

Performs element-by-element bitwise AND between packed 32-bit integer elements of a and b, storing the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_and_epi64Experimentalavx512f

Compute the bitwise AND of packed 64-bit integers in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_andnot_epi32Experimentalavx512f

Compute the bitwise NOT of packed 32-bit integers in a and then AND with b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_andnot_epi64Experimentalavx512f

Compute the bitwise NOT of packed 64-bit integers in a and then AND with b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_avg_epu8Experimentalavx512bw

Average packed unsigned 8-bit integers in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_avg_epu16Experimentalavx512bw

Average packed unsigned 16-bit integers in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_bitshuffle_epi64_maskExperimentalavx512bitalg

Considers the input b as packed 64-bit integers and c as packed 8-bit integers. Then groups 8 8-bit values from cas indices into the the bits of the corresponding 64-bit integer. It then selects these bits and packs them into the output.

_mm512_mask_blend_epi8Experimentalavx512bw

Blend packed 8-bit integers from a and b using control mask k, and store the results in dst.

_mm512_mask_blend_epi16Experimentalavx512bw

Blend packed 16-bit integers from a and b using control mask k, and store the results in dst.

_mm512_mask_blend_epi32Experimentalavx512f

Blend packed 32-bit integers from a and b using control mask k, and store the results in dst.

_mm512_mask_blend_epi64Experimentalavx512f

Blend packed 64-bit integers from a and b using control mask k, and store the results in dst.

_mm512_mask_blend_pdExperimentalavx512f

Blend packed double-precision (64-bit) floating-point elements from a and b using control mask k, and store the results in dst.

_mm512_mask_blend_psExperimentalavx512f

Blend packed single-precision (32-bit) floating-point elements from a and b using control mask k, and store the results in dst.

_mm512_mask_broadcast_f32x4Experimentalavx512f

Broadcast the 4 packed single-precision (32-bit) floating-point elements from a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_broadcast_f64x4Experimentalavx512f

Broadcast the 4 packed double-precision (64-bit) floating-point elements from a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_broadcast_i32x4Experimentalavx512f

Broadcast the 4 packed 32-bit integers from a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_broadcast_i64x4Experimentalavx512f

Broadcast the 4 packed 64-bit integers from a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_broadcastb_epi8Experimentalavx512bw

Broadcast the low packed 8-bit integer from a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_broadcastd_epi32Experimentalavx512f

Broadcast the low packed 32-bit integer from a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_broadcastq_epi64Experimentalavx512f

Broadcast the low packed 64-bit integer from a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_broadcastsd_pdExperimentalavx512f

Broadcast the low double-precision (64-bit) floating-point element from a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_broadcastss_psExperimentalavx512f

Broadcast the low single-precision (32-bit) floating-point element from a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_broadcastw_epi16Experimentalavx512bw

Broadcast the low packed 16-bit integer from a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_cmp_epi8_maskExperimentalavx512bw

Compare packed signed 8-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmp_epi16_maskExperimentalavx512bw

Compare packed signed 16-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmp_epi32_maskExperimentalavx512f

Compare packed signed 32-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmp_epi64_maskExperimentalavx512f

Compare packed signed 64-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmp_epu8_maskExperimentalavx512bw

Compare packed unsigned 8-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmp_epu16_maskExperimentalavx512bw

Compare packed unsigned 16-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmp_epu32_maskExperimentalavx512f

Compare packed unsigned 32-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmp_epu64_maskExperimentalavx512f

Compare packed unsigned 64-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmp_pd_maskExperimentalavx512f

Compare packed double-precision (64-bit) floating-point elements in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmp_ps_maskExperimentalavx512f

Compare packed single-precision (32-bit) floating-point elements in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmp_round_pd_maskExperimentalavx512f

Compare packed double-precision (64-bit) floating-point elements in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.

_mm512_mask_cmp_round_ps_maskExperimentalavx512f

Compare packed single-precision (32-bit) floating-point elements in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.

_mm512_mask_cmpeq_epi8_maskExperimentalavx512bw

Compare packed signed 8-bit integers in a and b for equality, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpeq_epi16_maskExperimentalavx512bw

Compare packed signed 16-bit integers in a and b for equality, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpeq_epi32_maskExperimentalavx512f

Compare packed 32-bit integers in a and b for equality, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpeq_epi64_maskExperimentalavx512f

Compare packed 64-bit integers in a and b for equality, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpeq_epu8_maskExperimentalavx512bw

Compare packed unsigned 8-bit integers in a and b for equality, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpeq_epu16_maskExperimentalavx512bw

Compare packed unsigned 16-bit integers in a and b for equality, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpeq_epu32_maskExperimentalavx512f

Compare packed unsigned 32-bit integers in a and b for equality, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpeq_epu64_maskExperimentalavx512f

Compare packed unsigned 64-bit integers in a and b for equality, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpeq_pd_maskExperimentalavx512f

Compare packed double-precision (64-bit) floating-point elements in a and b for equality, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpeq_ps_maskExperimentalavx512f

Compare packed single-precision (32-bit) floating-point elements in a and b for equality, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpge_epi8_maskExperimentalavx512bw

Compare packed signed 8-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpge_epi16_maskExperimentalavx512bw

Compare packed signed 16-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpge_epi32_maskExperimentalavx512f

Compare packed signed 32-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpge_epi64_maskExperimentalavx512f

Compare packed signed 64-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpge_epu8_maskExperimentalavx512bw

Compare packed unsigned 8-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpge_epu16_maskExperimentalavx512bw

Compare packed unsigned 16-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpge_epu32_maskExperimentalavx512f

Compare packed unsigned 32-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpge_epu64_maskExperimentalavx512f

Compare packed unsigned 64-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpgt_epi8_maskExperimentalavx512bw

Compare packed signed 8-bit integers in a and b for greater-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpgt_epi16_maskExperimentalavx512bw

Compare packed signed 16-bit integers in a and b for greater-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpgt_epi32_maskExperimentalavx512f

Compare packed signed 32-bit integers in a and b for greater-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpgt_epi64_maskExperimentalavx512f

Compare packed signed 64-bit integers in a and b for greater-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpgt_epu8_maskExperimentalavx512bw

Compare packed unsigned 8-bit integers in a and b for greater-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpgt_epu16_maskExperimentalavx512bw

Compare packed unsigned 16-bit integers in a and b for greater-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpgt_epu32_maskExperimentalavx512f

Compare packed unsigned 32-bit integers in a and b for greater-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpgt_epu64_maskExperimentalavx512f

Compare packed unsigned 64-bit integers in a and b for greater-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmple_epi8_maskExperimentalavx512bw

Compare packed signed 8-bit integers in a and b for less-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmple_epi16_maskExperimentalavx512bw

Compare packed signed 16-bit integers in a and b for less-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmple_epi32_maskExperimentalavx512f

Compare packed signed 32-bit integers in a and b for less-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmple_epi64_maskExperimentalavx512f

Compare packed signed 64-bit integers in a and b for less-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmple_epu8_maskExperimentalavx512bw

Compare packed unsigned 8-bit integers in a and b for less-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmple_epu16_maskExperimentalavx512bw

Compare packed unsigned 16-bit integers in a and b for less-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmple_epu32_maskExperimentalavx512f

Compare packed unsigned 32-bit integers in a and b for less-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmple_epu64_maskExperimentalavx512f

Compare packed unsigned 64-bit integers in a and b for less-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmple_pd_maskExperimentalavx512f

Compare packed double-precision (64-bit) floating-point elements in a and b for less-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmple_ps_maskExperimentalavx512f

Compare packed single-precision (32-bit) floating-point elements in a and b for less-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmplt_epi8_maskExperimentalavx512bw

Compare packed signed 8-bit integers in a and b for less-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmplt_epi16_maskExperimentalavx512bw

Compare packed signed 16-bit integers in a and b for less-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmplt_epi32_maskExperimentalavx512f

Compare packed signed 32-bit integers in a and b for less-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmplt_epi64_maskExperimentalavx512f

Compare packed signed 64-bit integers in a and b for less-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmplt_epu8_maskExperimentalavx512bw

Compare packed unsigned 8-bit integers in a and b for less-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmplt_epu16_maskExperimentalavx512bw

Compare packed unsigned 16-bit integers in a and b for less-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmplt_epu32_maskExperimentalavx512f

Compare packed unsigned 32-bit integers in a and b for less-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmplt_epu64_maskExperimentalavx512f

Compare packed unsigned 64-bit integers in a and b for less-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmplt_pd_maskExperimentalavx512f

Compare packed double-precision (64-bit) floating-point elements in a and b for less-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmplt_ps_maskExperimentalavx512f

Compare packed single-precision (32-bit) floating-point elements in a and b for less-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpneq_epi8_maskExperimentalavx512bw

Compare packed signed 8-bit integers in a and b for not-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpneq_epi16_maskExperimentalavx512bw

Compare packed signed 16-bit integers in a and b for not-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpneq_epi32_maskExperimentalavx512f

Compare packed 32-bit integers in a and b for not-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpneq_epi64_maskExperimentalavx512f

Compare packed signed 64-bit integers in a and b for not-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpneq_epu8_maskExperimentalavx512bw

Compare packed unsigned 8-bit integers in a and b for not-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpneq_epu16_maskExperimentalavx512bw

Compare packed unsigned 16-bit integers in a and b for not-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpneq_epu32_maskExperimentalavx512f

Compare packed unsigned 32-bit integers in a and b for not-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpneq_epu64_maskExperimentalavx512f

Compare packed unsigned 64-bit integers in a and b for not-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpneq_pd_maskExperimentalavx512f

Compare packed double-precision (64-bit) floating-point elements in a and b for not-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpneq_ps_maskExperimentalavx512f

Compare packed single-precision (32-bit) floating-point elements in a and b for not-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpnle_pd_maskExperimentalavx512f

Compare packed double-precision (64-bit) floating-point elements in a and b for not-less-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpnle_ps_maskExperimentalavx512f

Compare packed single-precision (32-bit) floating-point elements in a and b for not-less-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpnlt_pd_maskExperimentalavx512f

Compare packed double-precision (64-bit) floating-point elements in a and b for not-less-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpnlt_ps_maskExperimentalavx512f

Compare packed single-precision (32-bit) floating-point elements in a and b for not-less-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpord_pd_maskExperimentalavx512f

Compare packed double-precision (64-bit) floating-point elements in a and b to see if neither is NaN, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpord_ps_maskExperimentalavx512f

Compare packed single-precision (32-bit) floating-point elements in a and b to see if neither is NaN, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpunord_pd_maskExperimentalavx512f

Compare packed double-precision (64-bit) floating-point elements in a and b to see if either is NaN, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpunord_ps_maskExperimentalavx512f

Compare packed single-precision (32-bit) floating-point elements in a and b to see if either is NaN, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_compress_epi8Experimentalavx512vbmi2

Contiguously store the active 8-bit integers in a (those with their respective bit set in writemask k) to dst, and pass through the remaining elements from src.

_mm512_mask_compress_epi16Experimentalavx512vbmi2

Contiguously store the active 16-bit integers in a (those with their respective bit set in writemask k) to dst, and pass through the remaining elements from src.

_mm512_mask_compress_epi32Experimentalavx512f

Contiguously store the active 32-bit integers in a (those with their respective bit set in writemask k) to dst, and pass through the remaining elements from src.

_mm512_mask_compress_epi64Experimentalavx512f

Contiguously store the active 64-bit integers in a (those with their respective bit set in writemask k) to dst, and pass through the remaining elements from src.

_mm512_mask_compress_pdExperimentalavx512f

Contiguously store the active double-precision (64-bit) floating-point elements in a (those with their respective bit set in writemask k) to dst, and pass through the remaining elements from src.

_mm512_mask_compress_psExperimentalavx512f

Contiguously store the active single-precision (32-bit) floating-point elements in a (those with their respective bit set in writemask k) to dst, and pass through the remaining elements from src.

_mm512_mask_conflict_epi32Experimentalavx512cd

Test each 32-bit element of a for equality with all other elements in a closer to the least significant bit using writemask k (elements are copied from src when the corresponding mask bit is not set). Each element’s comparison forms a zero extended bit vector in dst.

_mm512_mask_conflict_epi64Experimentalavx512cd

Test each 64-bit element of a for equality with all other elements in a closer to the least significant bit using writemask k (elements are copied from src when the corresponding mask bit is not set). Each element’s comparison forms a zero extended bit vector in dst.

_mm512_mask_cvt_roundepi32_psExperimentalavx512f

Convert packed signed 32-bit integers in a to packed single-precision (32-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_cvt_roundepu32_psExperimentalavx512f

Convert packed unsigned 32-bit integers in a to packed single-precision (32-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_cvt_roundpd_epi32Experimentalavx512f

Convert packed double-precision (64-bit) floating-point elements in a to packed 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_cvt_roundpd_epu32Experimentalavx512f

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_cvt_roundpd_psExperimentalavx512f

Convert packed double-precision (64-bit) floating-point elements in a to packed single-precision (32-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_cvt_roundph_psExperimentalavx512f

Convert packed half-precision (16-bit) floating-point elements in a to packed single-precision (32-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.

_mm512_mask_cvt_roundps_epi32Experimentalavx512f

Convert packed single-precision (32-bit) floating-point elements in a to packed 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_cvt_roundps_epu32Experimentalavx512f

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_cvt_roundps_pdExperimentalavx512f

Convert packed single-precision (32-bit) floating-point elements in a to packed double-precision (64-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.

_mm512_mask_cvt_roundps_phExperimentalavx512f

Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.

_mm512_mask_cvtepi8_epi16Experimentalavx512bw

Sign extend packed 8-bit integers in a to packed 16-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_cvtepi8_epi32Experimentalavx512f

Sign extend packed 8-bit integers in a to packed 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_cvtepi8_epi64Experimentalavx512f

Sign extend packed 8-bit integers in the low 8 bytes of a to packed 64-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_cvtepi16_epi8Experimentalavx512bw

Convert packed 16-bit integers in a to packed 8-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_cvtepi16_epi32Experimentalavx512f

Sign extend packed 16-bit integers in a to packed 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_cvtepi16_epi64Experimentalavx512f

Sign extend packed 16-bit integers in a to packed 64-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_cvtepi16_storeu_epi8Experimentalavx512bw

Convert packed 16-bit integers in a to packed 8-bit integers with truncation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm512_mask_cvtepi32_epi8Experimentalavx512f

Convert packed 32-bit integers in a to packed 8-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_cvtepi32_epi16Experimentalavx512f

Convert packed 32-bit integers in a to packed 16-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_cvtepi32_epi64Experimentalavx512f

Sign extend packed 32-bit integers in a to packed 64-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_cvtepi32_pdExperimentalavx512f

Convert packed signed 32-bit integers in a to packed double-precision (64-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_cvtepi32_psExperimentalavx512f

Convert packed signed 32-bit integers in a to packed single-precision (32-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).